Общие принципы устройства схем теплоснабжения

Система теплоснабжения представляет собой систему транспортировки тепловой энергии (в виде нагретой воды или пара) от источника тепловой энергии к ее потребителю.

Система теплоснабжения в основном состоит из трех частей: источник тепла, потребитель тепла, тепловая сеть - служащая для транспортировки тепла от источника к потребителю.

  1. Паровой котел на ТЭЦ или котельной.
  2. Сетевой теплообменник.
  3. Циркуляционный насос.
  4. Теплообменник системы горячего водоснабжения.
  5. Теплообменник системы отопления.

Роль элементов схемы:

  • котельный агрегат - источник тепла, передача теплоты сгорания топлива к теплоносителю;
  • насосное оборудование - создание циркуляции теплоносителя;
  • подающий трубопровод - подача нагретого теплоносителя от источника к потребителю;
  • обратный трубопровод - возврат охлажденного теплоносителя на источник от потребителя;
  • теплообменное оборудование - преобразование тепловой энергии.

Температурные графики

В нашей стране принято качественное регулирование отпуска теплоты потребителям. Т. е. не изменяя расход теплоносителя через теплопотребляющую систему, изменяется разность температур на входе и на выходе системы.

Это достигается изменением температуры в подающем трубопроводе в зависимости от температуры наружного воздуха. Чем ниже температура наружного воздуха, тем выше температура в подающем трубопроводе. Соответственно температура обратного трубопровода также изменяется по этой зависимости. И все системы потребляющие тепло проектируются с учетом этих требований.

Графики зависимости температур теплоносителя в подающем и обратном трубопроводе называются температурным графиком системы теплоснабжения.

Температурный график устанавливается источником теплоснабжения в зависимости от его мощности, требований тепловых сетей, требований потребителей. Температурные графики называются по максимальным температурам в подающем и обратном трубопроводах: 150/70, 95/70 …

Срезка графика в верхней части - когда у котельной не хватает мощности.

Срезка графика в нижней части - для обеспечения работоспособности систем ГВС.

Работа систем отопления идет в основном по графику 95/70 для обеспечения средней температуры в отопительном приборе 82,5°С при -30° С.

Если требуемую температуру в подающем трубопроводе обеспечивает источник тепла, то требуемую температуру в обратном трубопроводе обеспечивает потребитель тепла своей теплопотребляющей системой. Если происходит завышение температуры обратной воды от потребителя, то это означает неудовлетворительную работу его системы и влечет за собой штрафы т. к. приводит к ухудшению работы источника тепла. При этом снижается его КПД. Поэтому существуют специальные контролирующие организации, которые отслеживают, чтобы теплопотребляющие системы потребителей выдавали температуру обратной воды по температурному графику или ниже. Однако в некоторых случаях подобное завышение допускается, напр. при установке отопительных теплообменников.

График 150/70 позволят передавать тепло от источника тепла с меньшими расходами теплоносителя, однако в домовые системы отопления нельзя подавать теплоноситель с температурой выше 105°С. Поэтому производят понижение графика, например на 95/70. Понижение производится установкой теплообменника либо подмесом обратной воды в подающий трубопровод.

Гидравлика тепловых сетей

Циркуляция воды в системах теплоснабжения производится сетевыми насосами на котельных и тепловых пунктах. Так как протяженность трасс достаточно велика то разность давления в подающем и обратном трубопроводах, которую создает насос, уменьшается с удалением от насоса.

Из рисунка видно, что для наиболее удаленного потребителя самый малый располагаемый перепад давления. Т. е. для нормальной работы его теплопотребляющих систем необходимо чтобы они имели самое малое гидравлическое сопротивление для обеспечения требуемого расхода воды через них.

Расчет пластинчатых теплообменников для систем отопления

Приготовление отопительной воды может происходить путем нагрева в теплообменнике.

При расчете пластинчатого теплообменника для получения отопительной воды , исходные данные берутся для самого холодного периода, т. е. когда необходимы самые высокие температуры и соответственно самое большое теплопотребление. Это наихудший режим для теплообменника, рассчитанного на отопление.

Особенностью расчета теплообменника для системы отопления является завышенная температура обратной воды по греющей стороне. Это допускается специально т. к. любой поверхностный теплообменник принципиально не может охладить обратную воду до температуры графика, если по нагреваемой стороне на вход в теплообменник поступает вода с температурой графика. Обычно допускается разница 5-15°С.

Расчет пластинчатых теплообменников для систем ГВС

При расчете пластинчатых теплообменников для систем горячего водоснабжения исходные данные берутся для переходного периода, т. е. когда температура подающего теплоносителя низка (обычно 70°С), холодная вода имеет самую низкую температуру (2-5°С) и при этом еще работает система отопления - это май-сентябрь месяцы. Это наихудший режим для теплообменника ГВС.

Расчетная нагрузка для систем ГВС определяется исходя из наличия на объекте, где устанавливаются теплообменники аккумуляторных баков.

При отсутствии баков расчет пластинчатых теплообменников производится на максимальную нагрузку. Т. е. теплообменники должны обеспечивать нагрев воды и при максимальном водоразборе.

При наличии аккумуляторных баков пластинчатые теплообменники рассчитываются на среднечасовую нагрузку. Аккумуляторные баки пополняются постоянно и компенсируют пиковый водоразбор. Теплообменники должны обеспечивать только подпитку баков.

Соотношение максимальной и среднечасовой нагрузок достигает в некоторых случаях 4-5 раз.

Обращаем Ваше внимание, что расчет пластинчатых теплообменников удобно производить в собственной

Что нужно знать для правильного расчета теплообменного оборудования?

При выборе и монтаже теплообменного оборудования следует учитывать индивидуальные особенности и условия конкретного объекта. По этой причине перед покупкой теплообменника важно провести расчет теплообменника и узнать основные характеристики системы, в которую он будет вмонтирован. Опираясь на полученные данные, можно подобрать самое подходящее устройство.

Чтобы купить подходящий теплообменник, технические характеристики которого подойдут под конкретную систему, нужно знать:

1. В каком месте будет стоять прибор, и где он будет использоваться. Это может быть вентиляционная система, горячее водоснабжение, отопление или технологические процессы.

2. Мощность теплообменника и его тепловую нагрузку. Если нет информации по тепловой нагрузке, нужно знать расход воды в теплообменнике

3. Производя расчет теплообменника пластинчатого вода-вода, масло-вода и пар-вода, следует учесть тип среды, в которой будет функционировать прибор. Также теплообменное оборудование используют в пищевой промышленности и в сложных технологических процессах.

4. Немаловажное значение при выборе теплообменного устройства имеет температура рабочей среды.

Благодаря этой информации можно узнать, как рассчитать теплообменник и определиться с материалом изготовления пластин и уплотнительных элементов. Также эти данные помогут подобрать компоновку, габариты рамы, число пластин и их толщину.

Как рассчитать мощность теплообменника?

Расчет мощности пластинчатого теплообменника начинается с того, что нужно знать знать объём подогреваемой среды и разницу температур между жидкостями. Мощность теплообменника высчитывается по формуле:
P = 1,16 х ∆Т / (t x V), где
Р – необходимая мощность теплообменника;
1,16 – специально подобранная константа;
∆Т – разница температур;
t – время;
V – объем.

Для расчета важен расход воды через теплообменник, мощность теплообменника, средняя разность температур сред и коэффициент передачи тепла. Подсчет этих характеристик совершается посредством уравнения теплового баланса:

Q = Q1 = Q2
Q - объём теплоты передаваемое или принимаемое теплоносителем(Вт). Из этого выходит:
Q1 = G1c1·(t1н – t1к) и Q2 = G2c2·(t2к – t2н)
где
G1,2 – расход воды в теплообменнике [кг/ч];
с1,2 – теплоемкости горячего и холодного теплоносителей [Дж/кг·град];
t1,2 н – начальная температура горячего и холодного теплоносителей [°C];
t1,2 к – конечная температура горячего и холодного теплоносителей [°C];

Где взять данные для расчета?

В ТУ предприятия, которое занимается теплоснабжением;
в техзадании, которое составляется инженером и главным технологом;
в проекте теплообменной системы или в пункте, где находится устройство;
в договоре с компанией, которая отвечает за теплоснабжение.

Как рассчитать теплообменник пластинчатый?

Расчет теплообменного оборудования – это сложный и длительный процесс, в котором легко допустить ошибку. Поэтому расчет теплообменника должен проводить исключительно специалист с опытом. В большинстве случаев этим занимается официальный дилер или специалист от завода-производителя теплообменного оборудования. Для того, чтобы свести к минимуму возможные ошибки в расчетах, профессионалы используют специальные программы и формулы.

В таких программах имеются специальные таблицы, куда вводятся исходные данные, после чего в автоматическом режиме выдается несколько правильных вариантов расчета.

Официальные дилеры производят расчеты намного быстрее, чем специалисты завода-изготовителя. Кроме теплообменного оборудования выдается лист расчета устройства. По нему можно будет легко определить, соответствуют ли параметры выбранного прибора техническим условиям конкретной системы, в которой монтируется теплообменник. Важно понимать, что самостоятельно провести расчет теплообменника практически невозможно, так как необходимые для этого данные скрыты, и получить их может не каждый человек.

Остались вопросы?

Вы всегда можете получить консультацию по расчету пластинчатого, паяного, кожухотрубного теплообменника, а также специального теплообменного оборудования у наших инженеров совершенно бесплатно.

Мы поможем определится какой именно вариант больше подходит для Вашего объекта , учитывая технические характеристики и пожелания.
Обращайтесь по номеру 8-804-333-71-04 (звонок бесплатный) , или же напишите на электронную почту
С наиболее полной информацией о теплообменном оборудовании Вы всегда можете ознакомиться на нашем

Тепловой расчет теплообменника заключается в определении площади теплопередающей поверхности теплообменника по формуле:

т.е. в предварительном определении величин Q, K, t cp . Для этих расчетов необходимо определить физические параметры теплоносителей. Для воды физическими параметрами будут: теплоемкость, коэффициент теплопроводности, плотность, коэффициент вязкости; для пара – удельная теплота парообразования. Для определения физических параметров часто используют метод интерполяции.

Тепловую нагрузку аппарата и расход горячего теплоносителя определяем из уравнения теплового баланса при нагреве холодного теплоносителя при конденсации водяного насыщенного пара:
Q пр = D × r;
Q расх = 1,05 × G × с(t 2 - t 1)
где D – расход греющего пара, кг/с; r – теплота парообразования (конденсации), Дж/кг; 1,05 – коэффициент учитывающий потери тепла в размере 5%; G = V × r – массовый расход воды, кг/с; V – объемный расход воды, м 3 /с; r – плотность воды, кг/м 3 ; t 1 , t 2 – начальная и конечная температура воды, 0 С; с – средняя удельная теплоемкость воды, Дж/(кг×К).

Среднюю разность температур, будем определять так же, как при противотоке, а затем вводить поправку в виде коэффициента e, т.е. Δt ср = e × Δt против. В случае конденсации пара на трубах расчет будет одинаков как для прямотока, так и для противотока, а значение коэффициента e можно принять равным 1. Для определения Δt ср находим Δt max , Δt min , их отношение и Δt ср по среднеарифметической или по среднелогарифмической формулам.

В отдельных материалах Вы найдете:

Если сравнить эти простейшие тепловые расчеты двух теплообменных аппаратов различных типов, но одинаковой тепловой производительности, то становится очевидно, что коэффициент теплопередачи за счет более значительной турбулизации потоков у пластинчатого теплообменника практически в несколько раз выше нежели у теплообменника кожухотрубного. Площадь теплообмена, необходимая для придания теплоносителям заданных параметров тоже в разы ниже у теплообменника пластинчатого типа. При этом конструктивные размеры у полученного кожухотрубного теплообменника существенно превосходят габариты пластинчатого теплообменника, что, опять же, свидетельствует не в пользу теплообменников кожухотрубных.

Специалисты компании Астера всегда помогут осуществить бесплатный расчет пластинчатого теплообменника и подскажут стоимость его заказа. Избавив Вас при этом от лишних хлопот с расчетами. Обратиться к ним за помощью можно воспользовавшись специальным сервисом для .

Главное условие стабильной, эффективной работы системы теплообмена — это подбор теплообменных агрегатов с учетом точного соответствия конкретным эксплуатационным и техническим требованиям. Ключевым фактором для такого подбора является расчет площади теплообменника.

Конечно, существуют определенные стандарты, с универсальными параметрами, по которым можно подобрать оборудование для своего объекта. Тем не менее, часто в этой сфере индивидуальный подход более чем оправдывает себя. Проведение измерений и расчетов по конкретным данным позволяет получить максимальную отдачу от системы теплообмена. Кроме того, подобные вычисления попросту необходимы, если речь идет о работе по техническому заданию со строго обозначенными параметрами.

Методика расчета теплообменника предполагает несколько этапов.

Определение количества теплоты

Уравнение передачи тепла, используемое для установившихся единиц времени и процессов выглядит следующим образом:

Q = KFtcp (Вт)

В данном уравнении:

  • К — значение коэффициента теплопередачи (выражается в Вт/(м2/К));
  • tср — средняя разность температурных показателей между разными теплоносителями (величина может даваться как в градусах по Цельсию (0С), так и в кельвинах (К));
  • F — значение площади поверхности, для которой происходит теплообмен (значение дается в м2).

Уравнение позволяет описать процесс, в ходе которого происходит передача теплоты между теплоносителями (от горячего — к холодному). Уравнение учитывает:

  • отдачу тепла от теплоносителя (горячего) к стенке;
  • параметры теплопроводности стенки;
  • отдачу тепла от стенки к теплоносителю (холодному).

Определение коэффициента теплопередачи

Для предварительных расчетов теплообменного оборудования и разного рода проверок применяют ориентировочные значения коэффициентов, стандартизированные для определенных категорий:

  • коэффициенты теплопередачи для процесса конденсации паров воды — от 4000 до 15000 Вт/(м2К);
  • коэффициенты теплопередачи для воды, движущейся по трубам — от 1200 до 5800 Вт/(м2К);
  • коэффициенты теплопередачи от парообразного конденсата к воде — от 800 до 3500 Вт/(м2К).

Точный расчет коэффициента теплопередачи (К) производится по следующей формуле:

В данной формуле:

  • α1 — коэффициент теплоотдачи для греющего теплоносителя (выражается в Вт/(м2К));
  • α2 — коэффициент теплоотдачи для нагреваемого теплоносителя (выражается в Вт/(м2К));
  • δст — параметр толщины стенок трубы (выражается в метрах);
  • λст — коэффициент теплопроводности материала, использованного для трубы (выражается в Вт/(м*К)).

Такая формула дает «идеальный» результат, обычно несоответствующий на 100% реальному положению дел. Поэтому в формулу добавляется еще один параметр — Rзаг.

Это показатель термического сопротивления различных загрязнений, формирующихся на нагревающихся поверхностях трубы (т.е. обычной накипи и др.)

Формула для показателя загрязнения выглядит так:

R = δ1/λ1 + δ2/λ2

В данной формуле:

  • δ1 — толщина слоя отложений на внутренней стороне трубы (в метрах);
  • δ2 — толщина слоя отложений на внешней стороне трубы (в метрах);
  • λ1 и λ2 — значения коэффициентов теплопроводности для соответствующих слоев загрязнений (выражаются в Вт/(м*К)).

Методика расчета теплообменника (площади поверхности)

Итак, мы рассчитали такие параметры, как количество теплоты (Q) и коэффициент теплопередачи (K). Для окончательного вычисления дополнительно потребуется разность температур (tср) и коэффициент теплоотдачи.

Итоговая формула расчета теплообменника пластинчатого (площади теплопередающей поверхности) выглядит так:

В данной формуле:

  • значения Q и K описаны выше;
  • значение tср (средняя разность температур) получают по формуле (среднеарифметической либо среднелогарифмической);
  • коэффициенты теплоотдачи получают двумя способами: либо с помощью эмпирических формул, либо через число Нуссельта (Nu) с использованием уравнений подобия.

В качестве основной цели теплообменника выступает передача тепла до холодного объекта от теплоносителя. Последний представляет собой вещество с высокой температурой. Его примером могут выступить:

  • жидкость;

Сегодня в магазинах можно отыскать теплообменники в широком ассортименте. Они отличаются по своим особенностям, а именно:

  • внешнему виду;
  • принципу действия;
  • разнице показателей температуры.

Этот список не является полным.

Описание принципа работы

Перед приобретением теплообменника принцип работы данного устройства обязательно следует рассмотреть. Он может быть основан на одном из трех процессов:

  • теплопроводность;
  • тепловое излучение;
  • конвекция.

Подразделить приборы можно по способу поставки тепла к холодному объекту. Таким образом, способы могут быть смесительными и теплообменными. В принципе их работы, виде и устройстве заключается основная разница. Наиболее удачный вариант принципа функционирования свойственен поверхностным агрегатам. Они являются одними из распространенных. Внутри таких приборов имеются чувствительные элементы, нагревающиеся и передающие тепло холодному объекту.

Если рассмотреть ближе смесительный агрегат, то о нем можно сказать, что он совмещает взаимодействие жидкости и воздуха, обеспечивая высокий коэффициент полезного действия. Эти устройства легки в изготовлении и позволяют добиться нужного результата за короткое время. Это обусловлено тем, что лишь при смешивании двух сред можно добиться таких результатов.

Рассматривая принцип работы теплообменников, можно отметить, что эти устройства обладают узлами, которые работают по определенному принципу. Их можно подразделить на регенеративные и рекуперативные. В последнем случае используются разные жидкости, которые взаимодействуют с помощью разделительной стенки. При обмене температурами поток остается прежним и не изменяется в обоих вариантах.

В рекуперативных теплообменниках имеется рабочий элемент, который выступает ещё и источником поставляемого тепла, а также зарядным устройством. Элемент нагревается при контакте с жидкостями и отдает в пространство необходимое тепло. При этом тепловой поток может изменять свое направление.

Дополнительно о принципе работы пластинчатого устройства для теплообмена

Пластинчатый теплообменник имеет соответствующие элементы, которые устанавливаются с поворотом на 180 °. В один пакет компонуются 4 элемента, что позволяет создавать два коллекторных контура подачи и отвода теплоносителя. Два крайних элемента в процессе участвовать не будут.

Производители предлагают к продаже две разновидности компоновки: одноходовую и многоходовую. В первом случае теплоноситель делится на параллельные потоки, которые проходят по каналам и оказываются в порту для вывода. Многоходовая компоновка имеет сложную схему, ведь теплообменник перемещается по одинаковому количеству каналов. Этого удалось достичь благодаря установке дополнительных пластин, которые предусматривают наличие глухих портов. Обслуживать многоходовые пластинчатые теплообменники гораздо сложнее.

Основные виды устройств

Теплообменный аппарат представлен к продаже во множестве разновидностей, среди них следует выделить:

  • погружную;
  • элементную;
  • графитовую;
  • двухтрубную;
  • пластинчатую;
  • витую;
  • спиральную;
  • кожухотрубную.

Погружной теплообменник имеет чувствительный элемент в виде цилиндрического змеевика, расположенного в сосуде. Последний заполняется жидкостью. Такая конструкция позволяет сократить время на подачу тепла прибором. Устройство погружного типа является одним из лучших по эффективности. Он используется в тех местах, где условия предполагают вероятность закипания.

Пластинчатый агрегат и его описание

Пластинчатый теплообменник обладает множеством преимуществ, а именно:

  • простотой чистки;
  • легкостью сборки;
  • минимальным сопротивлением гидравлики.

Эти приборы имеют концевые камеры, которые соединены крепежными болтами. Конструкция обладает рабочей пластиной и рамами. Пластины разделены резиновыми прокладками. А сами элементы изготавливаются из специальной стали. Технология установки пластин предполагает монтаж резиновой прокладки без клеевого состава, что обеспечивает плотное прилегание отдельных частей друг к другу. Рабочая среда может подаваться одним из трех методов:

  • смешанным;
  • прямоточным;
  • противоточным.

Элементный и витой теплообменники. Описание устройств

Элементный теплообменник позволяет соединить части системы в единую конструкцию. Принцип работы таких устройств схож с кожухотрубной разновидностью. Рабочая среда подается противоточно, а агрегат сочетает небольшое количество труб. Рассматривая виды теплообменников, вы должны обратить внимание на витую разновидность, которая обладает чувствительным элементом в виде концентрического змеевика, который фиксируется специальными головками, что обеспечивает защиту от кожуха. В данном устройстве используется схема с двумя жидкостями, одна из которых заполняет трубки, а другая находится в пространстве между ними. Эти агрегаты отлично справляются с перепадами давления и обладают отличной устойчивостью к износу.

Графитовый и спиральный теплообменники

Среди видов теплообменников можно выделить графитовую разновидность, которая имеет устройство, обеспечивающее защиту от коррозии. Эти приборы хорошо проводят тепло, а агрегат состоит из блоков, которые обладают формой цилиндра и прямоугольника. Рабочая жидкость движется по перекрестной схеме. Теплообменник состоит из:

  • крышки;
  • решётки;
  • трубки;
  • металлического корпуса.

Теплообменный аппарат может быть спиральным, принцип его работы выражен в использовании металлических листов. Они скручиваются в спираль и фиксируются на механизме, который называется креном. Для правильной работы важна герметизация теплообменника, которая достигается методом сваривания отдельных частей или монтажом прокладки.

Приборы сложны в производстве, ремонте и обслуживании. Устройство не должно использоваться в системе, где давление превышает 10 кгс/см 2 , что нельзя не назвать недостатком. Этот минус нивелируется компактными размерами прибора, незначительным весом и высокой эффективностью.

Дополнительно о принципе работы кожухотрубного агрегата

Кожухотрубный теплообменник получил такое название потому, что тонкие трубки, по которым движется теплоноситель, располагаются в центральной части основного кожуха. От количества трубок в середине будет зависеть то, с какой скоростью движется вещество. От этого, в свою очередь, зависит коэффициент теплопередачи.

Кожухотрубный теплообменник изготавливается из высокопрочных и легированных сталей. Они применяются потому, что устройство работает в агрессивной среде, которая способствует развитию коррозии. Теплообменник можно классифицировать на несколько разновидностей, среди них следует выделить:

  • с плавающей головкой;
  • с неподвижными трубками;
  • с температурным компенсатором;
  • в виде кожуха с U-образными трубками.

Описание теплообменника Pahlen MAXI-FLO

Это устройство представляет собой теплообменник для бассейна, стоимость которого составляет 18245 руб. Мощность устройства равна 40 кВт. Агрегат является вертикальным, а в качестве материала корпуса выступает нержавеющая сталь. Двухтрубное водяное устройство предназначено для подогрева воды. Теплоносителем выступает горячая вода из котла.

При строительстве уличного бассейна этот агрегат особенно актуален. Теплообменник для бассейна имеет первичный контур в виде трубок, он устанавливается вертикально. Разница температур в контурах достигает 60 °С. В первичном контуре максимальное давление может составить 10 бар, во вторичном - столько же. Вас может заинтересовать гидравлическое сопротивление первого контура, в данном случае оно составляет 0,05 м. Во вторичном контуре гидравлическое сопротивление равно 0,8 м.

Проведение расчётов

Прежде чем выбрать водоводяной теплообменник, расчет мощности этого устройства необходимо осуществить однозначно. Вообще, при выборе нужно обращать внимание на вид конструкции и качество устройства. Расчет мощности осуществляется по следующей формуле: Р = 1,16 х ∆Т / (t x V). В ней необходимая мощность обозначается буквой Р. Специально подобранная константа, здесь равна 1,16. Разница температур - ∆Т. Объём - V, тогда как время - t. Таким образом, при расчете мощности теплообменника следует понять, что эффективность устройства будет зависеть от потока рабочей среды по обоим контурам.

Конструктивное исполнение влияет на количество подогреваемой среды. Чем больше ее объем, тем больше будет пластин и патрубков. Довольно часто осуществляется ещё и определение поверхностей нагрева. Они обозначаются буквой F. Это значение можно найти, воспользовавшись формулой: Q/(K*?Тср), в которой Q - это тепловая мощность, а коэффициент теплопередачи - К.

Осуществляя расчеты теплообменника, вы должны помнить, что формула предусматривает наличие усредненной температуры напора между теплоносителями, это значение выражено в?Тср. Задачей выступает нахождение всех трёх переменных. Воспользовавшись уравнением теплового баланса, вы сможете найти тепловую мощность: Q=G*c*(T2-T1).

Теплоемкость воды при определенной температуре - это с. Расход обозначается буквой G. Проводя расчеты теплообменника, вы должны знать, что температура на входе и выходе обозначается в градусах и выглядит в формуле как T1и и T2. Для того чтобы расчёт получился более точным, к этой формуле необходимо добавить коэффициент полезного действия. Для определения значения?Тср необходимо воспользоваться следующей формулой: ?Тср= (?Тб? ?Тм) / (?Тб/ ?Тм). В ней наименьшая и наибольшая разницы температур обозначаются?Тб и?Тм.

Методика проведения расчетов

Коэффициент теплопередачи вы сможете отыскать в справочных материалах или рассчитать, воспользовавшись формулой: k = 1 / (1 / ?1 +?ст / ?ст + 1 / ?2). В ней?1 и?2 - коэффициенты теплопередачи со стороны принимающего и отдающего контуров. Толщина стены трубки - ?ст. Коэффициент теплопроводности материала труб - ?ст. Если осуществить расчет теплообменника, а точнее фактическую мощность, а также площадь, можно судить о правильном выборе устройства. Если эти значения не будут соответствовать, то это указывает на повышение вероятности образования отложений на стенках трубок. В самом крайнем случае они могут быть закупорены. Лучше воспользоваться специальными программами для расчета теплообменника, но при этом важно знать, какие методы и формулы лежат в основе.

Заключение

Довольно часто владельцы домов слышат об этом важном устройстве, которое играет одну из основных функций в системе отопления. Если дело доходит до автономной схемы, где используются нагревательные котлы, этот вопрос становится еще более актуальным. В них теплоноситель нагревается внутри теплообменника. Это полые устройства, где курсирует вода. Современные производители предлагают подобные приборы в широком ассортименте, они изготавливаются из разных металлов.