Всем привет! Начну я с небольшой предыстории. Как-то ранее я работал над проектом «Автомат подачи звонка» для своего учебного заведения. В последний момент, когда работа шла к завершению, я проводил калибровку устройства и исправлял косяки. В конце концов один из косяков мне спалил микросхему на программаторе. Было конечно немного обидно, программатор у меня всего один был, а проект нужно было быстрее заканчивать.

В тот момент у меня была запаснаяSMD микросхема для программатора, но паяльником её фиг отпаяешь. И я начал задумываться над приобретением паяльной станции с термо-феном. Залез в интернет магазин, увидел цены на паяльные станции, и приофигел… Самая убогая и дешёвая станция на тот момент стоила около 2800грн(более 80-100$). А хорошие, фирменные - еще дороже! И с того момента я решил заняться следующим проектом о создании своей паяльной станции с полного «Нуля».

Для своего проекта за основу был взят микроконтроллер семейства AVRATMega8A. Почему чисто «Атмегу», а не Arduino? Сама «мега» очень дешёвая (1$), а ArduinoNanoи Uno значительно подороже будет, да и программирование на МК начинал с «Меги».

Ладно, довольно истории. Перейдём к делу!

Для создании паяльной станции мне первым делом нужен был сам Паяльник, Термофен, Корпус и так далее:

Паяльник я приобрёл самый простой YIHUA – 907A(6$) в котором есть керамический нагреватель и термопара для контроля температуры;

Паяльный фен той же фирмыYIHUA(17$)во встроенной турбиной;

Был приобретён «Корпус N11AWЧёрный»(2$);

ЖК дисплей WH1602 для отображения показателей температури статуса(2$);

МК ATMega8A(1$);

Пара микро тумблиров(0,43$);

Энкодер со встроенной тактовой кнопкой – от куда-то отковырял;

Операционный усилитель LM358N (0,2$);

Две оптопары: PC818 иMOC3063(0,21 + 0,47);

И остальная различная расыпуха, которая у меня завалялась.

И в сумме станция обошлась мне примерно 30$, что в разы дешевле.

Паяльник и фен имеют следующие характеристики:

*Паяльник: Напряжение питания 24В, мощность 50Вт;

*Паяльный Фен: Спираль 220В, Турбина 24В, Мощность 700Вт, Температура до 480℃;

Так же была разработана не слишком замудрённая, но, на мой взгляд, вполне хорошая и функциональная принципиальная схема.

Принципиальная схема Паяльной Станции

Источники питания станции

В качестве источника паяльника для паяльника был взят понижающий трансформатор (220В-22В) на 60Вт.

А для схемы управления был взят отдельный источник питания:-зарядное устройство от смартфона. Данный источник питания был немного доработан и теперь он выдаёт 9В. Далее, с помощью понижающего стабилизатора напряжения ЕН7805, мы понижаем напряжение до 5В и подаем его на схему управления.

Управление и контроль

Для управления температурой Паяльника и Фена нам в первую очередь нужно снимать данные с датчиков температур, и в этом нам поможет операционный усилитель LM 358 .Т.к. ЕДС у термопарыTCK очень мало (несколько милливольт), то операционныйусилитель снимает этуЕДС с термопары и увеличивает её в сотни раз для восприятия АЦП микроконтроллераATMega8.

Так же меняя сопротивление подстроечным резистором R7 иR11можно изменять коэффициент усиления ОС, что в свою очередь, можно легко калибровать температуру паяльника.

Так как зависимость напряжения на оптопаре от температуры паяльника u=f(t)– примерно линейная, то калибровку можно осуществить очень просто: ставим жала паяльника на термопару мультиметра, выставляем мультиметр в режим «Измерение температуры», выставляем на станции температуру в 350℃, ждём пару минут пока паяльник нагреется, начинаем сравнивать температуру на мультиметре и установленную температуру и если показания температуры отличаются друг от друга – начинаем изменять коэффициент усиления на ОС (резистором R7 иR11) в большую или в меньшую сторону.

Паяльником мы будем управлять силовым полевым транзистором VT2 IRFZ 44 и оптопарой U3 PC 818 (для создания гальванической развязки). Питание на паяльник подаётся с трансформатора мощностью60Вт, через диодный мостVD1 на 4А и фильтрующий конденсатор наC4=1000мкФ иC5=100нФ.

Так как на фен подаётся переменное напряжение 220В то управлять Феном будем Симистором VS1 BT 138-600 и оптопарой U2 MO С3063 .

Обязательно нужно установить Снаббер!!! Состоящий из резистора R 20 220 Ом/2Вт и керамического конденсатора C 16 на 220нФ/250В. Снаббер предотвратит ложные открывания симистора BT 138-600.

В этой же цепи управления установлены светодиоды HL1 иHL2, сигнализирующие о работы Паяльника или Паяльного Фена. Когда светодиод постоянно горит, то происходит нагрев, а если они моргают, то происходит подержание заданной температуры.

Принцип стабилизации температуры

Хочу обратить внимание на способ регулировки температуры Паяльника и Фена. Изначально хотел осуществить ПИД регулировку (Пропорциональны Интегральный Дифференциальный регулятор), но понял, что это слишком сложно и не рентабельно, и я остановился просто на Пропорциональном регулировании с помощью ШИМ-модуляции.

Суть регулирования такова: При включении паяльника будет подана максимальная мощность на паяльник, при приближении к заданной температуре мощность начинает пропорционально понижаться, и при минимальной разнице между текущей и заданной температурой – подаваемая мощность на паяльник или фен держится на минимуме. Таким образом мы удерживаем заданную температуру и устраняем инерцию перегрева.

Коэффициент пропорциональности можно задать в программном коде. По умолчанию установлено «#define K_TERM_SOLDER 20»

«#define K_TERM_FEN 25»

Разработка печаткой платы

и внешнего вида станция

Для Паяльной Станции была разработана небольшая печатная плата в программе Sprint-Layout и изготовлена технологией «ЛУТ».

К сожалению я не чего не лудил, боялся что дорожки перегреются и они отлепятся от текстолита

Первым делом пропаял перемычки и SMD-резисторы, а потом всё остальное. В конце концов получилось как-то так:

Я остался доволен результатом!!!

Далее я занялся корпусом. Заказал себе небольшой чёрный корпус и начал ломать голову над лицевой панелью станции. И после одной неудачной попытки, наконец-то смой проделать ровные отверстия, вставить органы управления и закрепить их. Получалось как-то так, просто и лаконично.

Следом на заднюю панель были установлены разъём для шнура, выключатель, предохранитель

В корпус разместил трансформатор для паяльника, сбоку от него источник питания для схемы управления и посередине радиатор с транзисторомVT1(КТ819), который управляет турбиной на фене. Радиатор желательно ставить побольше чем у меня!!! Ибо транзистор сильно греется из-за падения напряжения не нём.

Собрав всё в кучу, станция приобрела вот такой внутренний вид:

Из обрезка текстолита были изготовлены подставки для паяльника и фена.

Конечный Вид Станции


В статье рассматривается самодельный микроконтроллерный блок управления паяльной станции, в состав которой входят низковольтный паяльник и паяльный фен промышленного изготовления. Блок может применяться также, как двухканальный измеритель температуры общего назначения с термопарами в качестве её датчиков и как одноканальный регулятор температуры.

В радиолюбительской практике очень часто возникает необходимость в удобном миниатюрном паяльнике для работы с мелкими радиодеталями, имеющем низкое напряжение питания, регулируемую температуру жала и возможность его заземления. Последнее значительно снижает риск повреждения электронных компонентов разрядами статического электричества.

В литературе опубликовано много описаний конструкций паяльников и паяльных фенов (далее - просто фенов), но самостоятельное изготовление большинства из них требует специального оборудования, подходящих материалов и существенных затрат времени. Однако сегодня есть возможность приобрести за небольшую цену уже готовые удобные в работе паяльник и фен со сменными насадками.

Можно выделить два распространённых варианта конструкции паяльников, различающихся способами нагревания жала и измерения его температуры. В первом варианте нагреватель охватывает паяльный стержень (как в классических электропаяльниках). Температуру измеряют с помощью термопары, прижатой к его хвостовику, противоположному острию. В такой конструкции нагревательная спираль надёжно защищена от механических нагрузок и повреждений. Но показания датчика температуры, удалённого на значительное расстояние от фактического места пайки, имеют заметную инерционность. Требуется некоторое время, чтобы отбор тепла от острия (жала) привёл к снижению температуры хвостовика. На практике этот недостаток компенсируется некоторым запасом по температуре стержня и его большой теплоёмкостью, обеспечивающей быстрый прогрев места пайки. Система регулирования фиксирует снижение температуры лишь при продолжительной непрерывной пайке и возвращает её к заданному значению, увеличивая мощность, отдаваемую в нагреватель.

Второй вариант отличается тем, что нагреватель расположен внутри стержня, адатчиктемпературы прижаткнему уближайшей кместупайки точки нагревателя. Этим обеспечена более быстрая реакция на изменение температуры острия в процессе пайки. В таких паяльниках обычно используют хрупкий керамический нагреватель, который легко повредить при падении паяльника на твёрдую поверхность или в случае других сильных механических нагрузок, либо внутренних механических напряжений, возникающих вследствие неравномерного отбора тепла (например, при работе с нестандартным жалом).

Ещё один рабочий инструмент современной паяльной станции - фен. С его помощью бесконтактно нагревают нужныеучастки печатной платы до температуры плавления припоя воздушным потоком заданной силы и температуры. Фен удобен и при групповой пайке пассивных электронных компонентов. Их предварительно раскладывают на печатной плате, покрыв места пайки слоем паяльной пасты. В процессе пайки эти компоненты самоцентри-руются на контактных площадках платы благодаря силам поверхностного натяжения расплавленного припоя.

Большую популярность фен получил у ремонтников, поскольку с его помощью можно оперативно выпаивать и запаивать многовыводные микросхемы с мелким шагом выводов. Фен также очень удобен для прогревания термоусаживаемых трубок и для продувки труднодоступных участков конструкций тёплым или холодным воздухом.

Ранее паяльные фены работали от компрессора, который находился в отдельном корпусе и подавал воздух по шлангу в ручку фена, в которой устанавливались нагреватель и датчик температуры. Необходимость выносного компрессора и его высокая цена сдерживали распространение таких фенов на рабочих местах радиолюбителей. С появлением фенов со встроенными вентиляторами оказалось возможным отказаться от громоздких компрессоров.

На рис. 1 представлен фотоснимок разобранных паяльника от паяльной станции Solomon SL-10/30 с датчиком температуры, установленным согласно первому из описанных выше вариантов, и фена от паяльной станции Lukey 852D+ FAN со встроенным вентилятором. Именно для работы с ними разрабатывался предлагаемый блок управления.

В металлическом кожухе передней части фена установлены нихромовый нагреватель и датчик температуры. По конструкции нагреватель аналогичен тем, что применяются в фенах для сушки волос. Напряжение питания нагревателя - 220 В, мощность - около 250 Вт. В расширенной части ручки фена находится центробежный вентилятор с напряжением питания 24 В (потребляемый ток 120 мА). Хочу обратить внимание, что внешний диаметр металлической части сопла у этого фена 25 мм в отличие от популярных "компрессорных" с наружным диаметром сопла 22 мм. В результате для него требуются специальные насадки, а для установки других необходим переходник. Самодельную насадку с круглым выходным отверстием небольшого диаметра, показанную на рис. 2, автор изготовил из старого оксидного конденсатора К50-3 20 мкФ на 350 В и автомобильного хомута.

Учитывая, что паяльником и феном обычно не пользуются одновременно, было решено упростить разрабатываемый блок, совместив органы управления этими инструментами и используя для отображения их температуры и режима работы одни и те же индикаторы.

Основные технические характеристики

Напряжение и частота питания, В (Гц) ...............220 (50)

Напряжение питания нагревателя паяльника, В............24

Мощность нагревателя паяльника, Вт....................48

Максимальная температура

Паяльника, оС.................420

Напряжение питания нагревателя фена, В...............220

Мощность нагревателя фена, Вт.......................250

Максимальная температура

Потока воздуха, оС............480

Дискретность отображения

Температуры, оС................1

Схема блока управления паяльной станции с подключёнными к нему паяльником и феном представлена на рис. 3. Имеющаяся в фене кнопка, обозначенная на схеме SB2, не используется. Блок управления построен на базе микроконтроллера PIC16F887 (DD1), который имеет в своём составе десятиразрядный АЦП и сконфигурирован на работу от встроенного тактового генератора частотой 8 МГц. Для программирования микроконтроллера предусмотрен разъём X4. Керамические конденсаторы C14 и C15 устанавливают как можно ближе к выводам питания микроконтроллера. Для подачи звуковых сигналов предназначен излучатель звука со встроенным генератором HA1, который управляется сигналами с вывода 40 (RB7) микроконтроллера через электронный ключ на транзисторе VT3.

Температуру измеряют с помощью термопар BK1 и BK2, установленных соответственно внутри фена и паяльника. ОУ DA1.1 и DA1.2 усиливают их тер-моЭДС. Холодные спаи термопар физически находятся в ручках паяльника и фена, компенсация изменений их температуры не предусмотрена. На практике отсутствие такой компенсации не вызывает заметных неудобств, так как пайка обычно производится в помещениях с мало изменяющейся температурой.

В качестве образцового напряжения АЦП микроконтроллера использовано напряжение его питания (5 В). Это не привело к появлению заметной погрешности. Вывод входа внешнего образцового напряжения АЦП оставлен свободным и при желании может быть использован для подключения внешнего источника образцового напряжения повышенной стабильности, например, микросхемы MCP1541 (4,096 В) или MCP1525 (2,5 В). При изменении образцового напряжения потребуется соответствующая корректировка коэффициентов усиления ОУ DA1.1 и DA1.2. Эти коэффициенты заданы с помощью резисторов R4, R8 для DA1.1 и R6, R9 для DA1.2. Их следует подбирать так, чтобы при максимальной температуре напряжение на выходе ОУ не превысило значения образцового напряжения АЦП.

В случае обрывов в цепях термопар (в том числе при отключённых от разъёмов X2 и X3 в пальнике или фене) через резисторы R2 и R3 на неинвертирующие входы ОУ поступает напряжение +12 В. Цепи R5C1 и R7C2 - фильтры, подавляющие высокочастотные наводки. Резисторы R10 и R11 совместно с находящимися внутри микроконтроллера защитными диодами защищают входы АЦП от перегрузки.

Управление мощностью нагревателя паяльника организовано с помощью аппаратного модуля ШИМ микроконтроллера. Импульсы переменной скважности он формирует на выводе 17 (RC2). С помощью мощного ключа на полевом транзисторе VT1 они включают и выключают нагреватель, изменяя среднюю потребляемую им мощность. Среднее значение напряжения, подаваемого на вентилятор фена, изменяется с помощью ШИМ, реализованной программно. Импульсы с вывода 16 (RC1) микроконтроллера поступают на двигатель M1 вентилятора через ключ на полевом транзисторе VT2.

Регулировка мощности нагревателя фена выполняется за счёт периодического пропуска некоторого числа периодов сетевого напряжения. Сигнал управления формируется микроконтроллером на выводе 10 (RE2) и поступает в цепь питания нагревателя через динисторный оптрон U1, оснащённый узлом синхронизации включения с моментом перехода через ноль приложенного к его выходной цепи напряжения, и симистор VS1. Светодиод HL1 предназначен для визуального контроля работы нагревателя фена.

В блоке использован четырёхразрядный семиэлементный светодиодный индикатор HG1 - RL-F5610GDAW/D15с общими катодами элементов каждого разряда. Аноды элементов подключены к порту D микроконтроллера DD1 через токоограничительные резисторы R24- R31, которые подобраны так, что суммарный ток через все выводы порта D при отображении любого знака не превышает 90 мА. Общие катоды разрядов индикатора коммутируют ключи на транзисторах VT5-VT8 по сигналам, формируемым на выводах RC4-RC7 микроконтроллера.

Светодиоды HL4-HL11 включены в общую систему динамической индикации как элементы дополнительного пятого разряда, включаемого транзистором VT9 по сигналу на выводе RC3 микроконтроллера. Светодиод HL4 слу-жит для индикации включения фена, а HL5 - резервный, его предполагается использовать при совершенствовании блока. Светодиоды HL6-HL11 образуют дискретную шкалу, включаясь по одному и показывая установленный в данный момент уровень мощности нагревателя паяльника (или фена, если он включён) ступенями по 1/6 полной мощности. Большей мощности соответствует светодиод с меньшим позиционным номером.

В качестве U2 - преобразователя сетевого переменного напряжения 220 В в постоянное 24 В - использован готовый импульсный блок питания PS-65-24 мощностью 65 Вт. Оксидный конденсатор C5 размещён рядом с ним и уже от этого конденсатора идут отдельные провода к каждому потребителю напряжения 24 В. Для получения из него напряжения 12 В служит импульсный понижающий преобразователь постоянного напряжения в постоянное на микросхеме MC33063 (DA2), аналогичный описанным в и . Делитель напряжения R17R19 подобран так, что на выходе преобразователя поддерживается напряжение 12 В. О его наличии свидетельствует свечение светодиода HL2. Далее линейный интегральный стабилизатор DA3 доводит напряжение до 5 В, необходимых для питания микроконтроллера DD1.

Сетевое напряжение 220 В поступает на блок питания U2 при нажатии на кнопку SB1. Программа микроконтроллера после выполнения инициализации устанавливает на его выходе RE0 (выводе 8) высокий логический уровень, который открывает транзистор VT4. Конденсатор C9 обеспечивает подачу в момент открывания транзистора полного напряжения 12 В на обмотку реле и его уверенное срабатывание. По завершении зарядки конденсатора ток через обмотку снижается до ограниченного резистором R23 значения, обеспечивающего лишь удержание якоря реле в сработавшем состоянии. Светодиод HL3 показывает, что напряжение на обмотку реле подано.

Сработавшее реле K1 своими контактами K1.1 шунтирует кнопку SB1. Теперь её можно отпустить, питание блока управления останется включённым, пока микроконтроллером не будет закрыт транзистор VT4.

После включения питания на индикаторе HG1 кратковременно появляется надпись с номером версии программы и звучит звуковой сигнал. Включается режим работы с паяльником, который плавно разогревается до температуры, установленной в предыдущих сеансах работы и записанной в EEPROM микроконтроллера. Текущее значение температуры отображается на индикаторе HG1, а уровень подводимой к паяльнику мощности - с помощью светодиодов HL6-HL11.

Чтобы исключить тепловой удар, до достижения температуры 100 °C уровень мощности ограничен до 40 % максимальной, а в интервале 100...300 °C - до 80 %. Это увеличивает время выхода на рабочую температуру, но продлевает срок службы паяльника. По достижении заданной температуры она стабилизируется на этом уровне. Вращением ручки энкодера S1 температуру можно изменить.

При нажатии на кнопку SB3 включается светодиод HL4, паяльник переводится в щадящий режим (его температура снижается до 150 оС), включается вентилятор фена, а затем его нагреватель. Температура потока воздуха из фена повышается по алгоритму, аналогичному разогреву паяльника. Нужную температуру устанавливают вращением ручки энкодера S1. После однократного нажатия на эту ручку её вращением можно регулировать интенсивность воздушного потока.

Повторным нажатием на копку SB3 нагреватель фена выключают, а паяльник переводят в рабочий режим. Вентилятор фена продолжит работать, пока температура потока воздуха не снизится до 60 оС. После этого он будет выключен автоматически.

При последовательных нажатиях на кнопку энкодера на индикатор HG1 поочерёдно выводятся названия следующих параметров:

AIR - интенсивность потока воздуха фена (только когда он включён);

StA0 - коэффициент А0 для паяльника;

StA1 - коэффициент А1 для паяльника;

FtA0 - коэффициент А0 для фена;

FtA1 - коэффициент А1 для фена.

Коэффициенты A0 и A1 используются программой микроконтроллера для определения температуры жала паяльника или подаваемого феном потока воздуха по полученному в результате работы АЦП числу N, линейно зависящему от термоЭДС соответствующей термопары. Температура T (в градусах Цельсия) вычисляется по формуле

При вращении ручки энкодера значение выбранного параметра изменяется и выводится на индикатор в мигающем виде вместо его названия. Если в течение нескольких секунд ручку не вращать и не нажимать, на индикатор возвратится текущее значение температуры паяльника или потока воздуха из фена.

При нажатии на кнопку SB5 микроконтроллер сохраняет текущие значения параметров в энергонезависимой памяти, выключает нагреватели паяльника и фена. Если в этот момент фен был активен, продувка нагревателя холодным воздухом продолжается, пока температура потока на его выходе не снизится до 60 оС, после чего микроконтроллер устанавливает низкий уровень напряжения на выходе RE0. Транзистор VT4 закрывается, и реле K1 размыкает свои контакты, отключая блок управления от питающей сети.

Кнопка SB4 - резервная. Её можно использовать при совершенствовании и расширении функциональных возможностей блока.

Вместо источника питания PS-65-24 (U2) для блока управления паяльной станцией может быть применён любой другой импульсный или трансформаторный блок сетевого питания, который обеспечивает стабилизированное постоянное напряжение 24 В при токе нагрузки не менее 2 А. Если использовать в качестве U2 блок, имеющий кроме выхода напряжения +24 В ещё один напряжением +12 В с допустимой нагрузкой не менее 300 мА, понижающий преобразователь на микросхеме MC33063AP1 из устройства можно исключить. Если этот преобразователь используется, микросхема MC33063AP1 в нём может быть заменена на MC34063AP1.

Реле K1, оптрон U1 и симистор VS1 размещены на отдельной печатной плате. Это необходимо для максимального удаления низковольтных цепей от тех, что находятся под напряжением 220 В.

Применено реле WJ112-1A с обмоткой на 12 В. Вместо него подойдёт и другое с контактами, рассчитанными на коммутацию переменного напряжения не менее 250 В при токе не менее потребляемого блоком управления и нагревателем фена. Если выбрано реле с номинальным напряжением катушки 24 В, её следует питать от источника этого напряжения.

Вместо оптрона MOC3063 можно использовать любой динисторный, способный напрямую управлять симисто-ром с допустимым напряжением не ниже 600 В. Чтобы не увеличивать уровень создаваемых в сети помех, желательно и на замену выбирать оптрон с узлом контроля перехода приложенного к его выходу напряжения через ноль.

Симистор BT138X-600 в изолированном пластиковом корпусе можно заменить аналогичным по параметрам BT138-600 в обычном корпусе TO-220 с металлическим фланцем или другим, выдерживающим в выключенном состоянии напряжение не менее 600 В, а во включённом - ток не менее 6 А. Симистор работает в блоке управления без теплоотвода.

Кнопки SB1, SB3-SB5 применены типа DS-502, но они могут быть заменены другими, удобными для монтажа. Кнопка SB1 должна быть рассчитана на переменное напряжение между разомкнутыми контактами не менее 250 В и выдерживать пусковой ток импульсного блока питания U2. Следует обязательно убедиться, что в выбранном блоке имеется терморезистор, ограничивающий пусковой ток. При его отсутствии следует обязательно установить последовательно с кнопкой SB1 или в самом блоке питания терморезистор с сопротивлением в холодном состоянии 5...10 Ом (например, SCK-052 или SCK-101).

Применённый энкодер ED1212S-24C24-30F - с механическими контактами, дающими 12 импульсов на оборот, и встроенной кнопкой. Может быть использован и другой, в том числе оптический энкодер с соответствующими узлами питания и формирования выходных импульсов.

Индикатор RL-F5610GDAW/D15 может быть заменён любым другим светодиодным с общими катодами элементов каждого разряда, например KEM-5641.

Для блока управления использован корпус Z-1, имеющийся в продаже. Его лицевая панель была заменена прозрачной, вырезанной из листового поликарбоната. С обратной стороны к ней прижата прозрачная плёнка для струйной печати, на которой напечатан рисунок передней панели.

На этой панели установлены кнопки SB1, SB3-SB5 и розетки разъёмов для подключения паяльника (X2 - пятиконтактная DIN 41524 или ОНЦ-ВГ-4-5/16-Р, известная также как СГ-5) и фена (X3 - восьмиконтактная DIN 45326 или ОНЦ-ВГ-5-8/16-Р). Описание этих разъёмов можно найти в . За прозрачной панелью укреплена плата с индикатором HG1 и светодиодами. Внешний вид блока вместе с паяльником и феном показан на рис. 4.

Если блок управления паяльной станцией собран правильно и микроконтроллер запрограммирован, он начинает работать сразу, требуется лишь задать коэффициенты А0 и А1 для паяльника и фена. Для этого сразу после подачи питания с помощью энкодера устанавливают на индикаторе HG1 температуру ниже комнатной. Далее нажатиями на кнопку энкодера выбирают установку коэффициента A0 для паяльника и, изменяя его, добиваются, чтобы индикатор показал текущую температуру в помещении. Затем, перейдя к установке коэффициента A1, вращением ручки энкодера получают на индикаторе его значение 1,0.

После этого закрепляют на жале паяльника термопару или другой датчик образцового измерителя температуры. Жало с прикреплённым к нему внешним датчиком желательно изолировать от окружающей среды каким-либо плохо проводящим тепло материалом, соблюдая при этом требования пожарной безопасности. С помощью энкодера устанавливают на индикаторе HG1 какую-либо не очень высокую температуру (например, 100 оС) и дожидаются стабилизации показаний образцового термометра. Если он показывает температуру выше заданной, значение коэффициента А1 следует уменьшить, в противном случае - увеличить. Подбирая этот коэффициент, добиваются, чтобы различие между измеренной образцовым термометром и установленной температурой не превышало 5 оС.

Не следует допускать роста температуры жала выше 300...400 оС (по образцовому термометру). Если это происходит, следует проверить напряжение на выходе ОУ DA1.2 и при необходимости подобрать его коэффициент усиления так, чтобы при максимально возможной температуре паяльника выходное напряжение ОУ не превышало образцового напряжения АЦП микроконтроллера. В завершение рекомендуется задать температуру жала, при которой предполагается выполнять большинство паек, и повторно подобрать коэффициент А1.

Аналогично подбирают коэффициенты А0 и А1 для фена. При этом интенсивность потока воздуха устанавливают средней и помещают датчик температуры образцового термометра на расстоянии 1 см от сопла фена. После подборки всех коэффициентов паяльная станция готова к работе.

С описанным блоком управления можно применять любой паяльник со встроенной термопарой и низковольтным нагревательным элементом. Фен должен быть с нагревательным элементом на напряжение 220 В и тоже со встроенной термопарой. Следует убедиться и в том, что вентилятор фена рассчитан на работу от напряжения 24 В. Обратите внимание, что цвета изоляции проводов, идущих от фена к разъёму, указанные на схеме рис. 3, не стандартизованы и могут быть другими.

Иногда встречаются паяльники и фены с терморезисторами в качестве датчиков температуры. Использовать их с описанным блоком управления нельзя без внесения существенных изменений в его измерительный тракт (узлы на микросхеме DA1) и корректировки программы микроконтроллера.

Альтернативным применением рассмотренной конструкции может стать двухканальный измеритель температуры любых объектов с датчиками в виде термопар и одноканальный регулятор температуры. Если регулировка температуры не требуется, то после установки коэффициентов А0 и А1 энкодер можно удалить.

Программу микроконтроллера блока управления можно скачать

Литература

1. PS-65 series 65W Single Output Switching PowerSupply. - http://www.meanwell.com/ search/ps-65/ps-65-spec.pdf.

2. MC34063A, MC33063A, SC34063A,SC33063A, NCV33063A 1.5 A, Step-Up/Down/ Inverting Switching Regulators. - http://www.onsemi.com/pub_link/Collateral/MC3 4063A-D.PDF.

3. Бирюков С. Преобразователи напряжения на микросхеме КР1156ЕУ5. - Радио, 2001, № 11, с. 38-42.

4. Разъём DIN. - http://ru.wikipedia.org/ wiki/Разъём%20DIN.


Дата публикации: 31.10.2013

Мнения читателей
  • Сергей / 19.11.2014 - 18:58
    как можно связаться с автором данной статьи!?
  • Сергей / 05.11.2014 - 18:34
    какой программой открывать программу скажите пожалуйста
  • Владимир / 27.09.2014 - 17:40
    Есть схема проще и дешевле,с открытым исходником (от ребят из МВТУ).

Привет ВСЕМ! Пополняем свою лабораторию самодельным инструментом - на этот раз это будет самодельная цифровая паяльная станция DSS. До этого у меня ничего подобного не было, поэтому и не понимал, в чем ее плюсы. Пошарив по интернету, на форуме «Радиокота» нашел схему, в которой использовался паяльник от паяльной станции Solomon или Lukey.

До этого все время паял таким паяльником, с понижающим блоком, без регулятора и естественно без встроенного термо-датчика:

Для будущей своей паяльной станции, прикупил уже современный паяльник со встроенным термо-датчиком (термопарой) BAKU907 24V 50W. В принципе подойдёт любой паяльник, какой Вам нравится, с термо-датчиком и напряжением питания 24 вольта.

И пошла потихоньку работа. Распечатал печатку для ЛУТ на глянцевой бумаге, перенёс на плату, протравил.

Сделал также рисунок для обратной стороны платы, под расположение деталей. Так легче паять, ну и выглядит красиво.


Плату делал размером 145х50 мм, под покупной пластиковый корпус, который уже был приобретён ранее. Впаял пока детали, какие были на тот момент в наличии.

R1 = 10 кОм
R2 = 1,0 МОм
R3 = 10 кОм
R4 = 1,5 кОм (подбирается)
R5 = 47 кОм потенциометр
R6 =120 кОм
R7 = 680 Ом
R8 = 390 Ом
R9 = 390 Ом
R10 = 470 Ом
R11 = 39 Ом
R12 =1 кОм
R13 = 300 Ом (подбирается)
C1 = 100нФ полиэстр
C2 = 4,7 нф керамика, полиэстр
C3 = 10 нФ полиэстр
C4 = 22 пф керамика
C5 = 22 пф керамика
C6 = 100нФ полиэстр
C7 = 100uF/25V электролитический
C8 = 100uF/16V электролитический
C9 = 100нФ полиэстр
С10 = 100нФ полиэстр
С11 = 100нФ полиэстр
С12 = 100нФ полиэстр
Т1 = симистор ВТ139-600
IC1 = ATMega8L
IC2 = отпрон МОС3060
IC3 = стабилизатор на 5 v 7805
IC4 = LM358P опер. усилитель
Cr1 = кварц 4 мГц
BUZER = сигнализатор МСМ-1206А
D1 = светодиод красный
D2 = светодиод зелёный
Br1 = мост на 1 А.

Для компактности плату сделал так, что Mega8 и LM358 будут располагаться за дисплеем (во многих своих поделках использую такой метод - удобно).


Плата, как уже говорил, имеет размер по длине 145мм, под готовый пластиковый корпус. Но это на всякий случай, т.к пока ещё не было силового трансформатора и в основном от него зависело, каким будет окончательный вариант корпуса. Или это будет корпус БП от компьютера, если трансформатор не влезет в пластиковый корпус, или если влезет, то готовый пластиковый покупной. По этому поводу заказал через интернет трансформатор ТОР 50Вт 24В 2А (они мотают на заказ).


После того, как трансформатор оказался дома, сразу стал ясен окончательный вариант корпуса для паяльной станции. По габаритам вполне должен был влезть в пластик. Примерил его в пластиковый корпус - по высоте подходит, даже есть небольшой запас.


Как уже говорил, что когда разрабатывал плату, то в первую очередь, конечно, учитывал размеры пластикового корпуса, поэтому плата в него подошла без проблем, только пришлось подрезать немного углы.


Переднюю панель для паяльной станции, как и в других своих поделках, сделал из акрила (оргстекла) 2мм. По оригинальной заглушке сделал свою. Пленку до окончания работы не снимаю, чтоб лишний раз не поцарапать.



Контроллер прошил, плату собрал. Пробные подключения готовой платы (пока без паяльника) прошли успешно.

Собираю все составные части паяльной станции в одно целое. Для паяльника поставил «Соломоновский» разъём (гнездо).

Подошло время для подключения самого паяльника и тут облом - разъём. Изначально в паяльнике был установлен такой разъём.

Пошёл в магазин за разъёмом. В магазинах у нас в городе ответной части не нашел. Поэтому в станции гнездо оставил, какое было, а на паяльнике разъём перепаял на наш советский от магнитофонов (СГ-5 вроде, или СР-5). Идеально подходит.

Теперь упаковываем всё в корпус, крепим окончательно трансформатор, переднюю панель, делаем все соединения.


Наша конструкция приобретает законченный вид. Получилась не большой, на столе займёт не много места. Ну и финальные фото.


Как работает станция, можно посмотреть это видео, которое я скинул на Ютюб.

Если будут какие нибудь вопросы по сборке, наладке - задавайте их , по возможности постараюсь ответить.

P.S.
По наладке:

1. Определить где у паяльника нагреватель, а где термопара. Померить омметром сопротивление на выводах, там где сопротивление меньше, там и будет термопара (нагреватель обычно имеет сопротивление выше термопары, у термопары сопротивление единицы Ом). У термопары соблюсти полярность при подключении.
2. Если сопротивление у измеренных выводов практически не отличается (мощный керамический нагреватель), то определить термопару и её полярность,можно следующим способом;
- нагреть паяльник, отключить его и цифровым мультиметром на самом малом диапазоне (200 милливольт) замерить напряжение на выводах паяльника. На выводах термопары будет напряжение несколько милливольт, полярность подключения будет видна на мультиметре.
3. Если на всех выводах паяльника измеренное сопротивление (попарно) больше 5-10-ти Ом (и более) на двух парных выводах (нагреватель и искомая термопара), то возможно у паяльника вместо термопары стоит терморезистор. Определить его можно с помощью омметра, для этого измеряем сопротивления на выводах, запоминаем, затем нагреваем паяльник. Снова измеряем сопротивление. Там где величина показаний изменится (от запомненного), там и будет терморезистор.
Ниже на рисунке показана распиновка разъёма "Соломоновского" паяльника

4. Подобрать значение R4.

В прикреплённом архиве находятся все необходимые файлы.

Архив для статьи

После того, как меня окончательно измучила моя паяльная станция 40 Вт неизвестного происхождения, я решился на создание паяльной станции своими руками профессионального уровня на АТМега8.

На рынке представлена недорогая продукция разных производителей (например, AIOU / YOUYUE и др.). Но у них, как правило, есть какой-то значительный дефект, либо спорный дизайн.

Предупреждаю: эта цифровая паяльная станция нужна, чтобы единственно паять, без лишних украшений типа AMOLED-дисплеев, сенсорных панелей, 50-ти режимов работы и интернет-управления.

Но все же у него будет несколько особенностей, которые вам пригодятся:

  • неактивный режим (поддерживает температуру 100-150°С, когда паяльник лежит на подставке.
  • таймер автоматического отключения, чтобы забывчивость не стала причиной пожара.
  • УАПП для отладки (только для данной сборки).
  • дополнительные разъемы на плате для подключения второго паяльника или фена.

Интерфейс достаточно прост: я сделал две кнопки, поворотный регулятор и ЖК-дисплей 16х2 (HD44780).

Для чего делать станцию самому

Пару лет назад я приобрел паяльную станцию через интернет, и, хотя работает она до сих пор хорошо, я устал работать с ней из-за дурацкого дизайна (короткий шнур питания, обдув не компрессорный и короткий неотсоединяемый шнур жала). Из-за недочетов в дизайне эту станцию даже на столе переставлять неудобно, корпус крутится вслед за жалом. Нутро было залито термоклеем, неделя ушла только на очистку компонентов и устранение мелких и крупных недостатков.

Крепление шнура подставки паяльника держалось на честном слове, изоляция постоянно сбивалась, а это и разрыв провода, и возможный пожар.

Шаг 1: Необходимые материалы

Список материалов и компонентов:

  • Преобразователь 24 В 50-60Вт. У моего трансформатора есть вторичная линия 9В, которая пойдет на логические элементы, в то время как первичная линия пойдет на паяльник. Также можете использовать понижающий преобразователь 5В для элементов, и отдельно внутреннее содержимое блока питания 24В для паяльника.
  • Микроконтроллер ATMega8.
  • Корпус. Подойдет любая коробка из твердого материала, предпочтительно металлическая, можно взять корпус от блока питания. Можно заказать такой корпус .
  • Двухсторонняя медная плата 100х150 мм.
  • Поворотный регулятор от старого кассетного магнитофона. Работает отлично, нужно только заменить колпачок регулятора.
  • ЖК-дисплей HD44780 16х2.
  • Радиокомпоненты (резисторы, конденсаторы и т.д.).
  • Стабилизатор напряжения LM7805 или аналогичный ему.
  • Радиатор размером не больше корпуса TO-220.
  • Сменный наконечник HAKKO 907 .
  • МОП-транзистор IRF540N.
  • Операционный усилитель LM358N.
  • Мостовой выпрямитель, две штуки.
  • 5-контактное гнездо и штекер к нему.
  • Выключатель.
  • Штепсельная вилка на ваш выбор, я использовал разъем от старого компьютера.
  • Предохранитель 5А и держатель для предохранителя .

Время на сборку – примерно 4-5 дней.

Что касается источника питания, то вы можете сделать вполне жизнеспособные версии/дополнения. Например, можно получить блок питания 24В 3А , использовав LM317 и LM7805, чтобы сбросить напряжение до.
Все детали из этого списка можно заказать с китайских интернет-площадок.

Шаг 2: День первый – продумываем электрическую схему





У паяльника HAKKO 907 много клонов, еще существует две разновидности оригинальных жала (с керамическими нагревательными элементами A1321 и A1322).

Дешевые клоны – примеры ранних копий, с применением ХА-термопары и керамического нагревателя самого паршивого качества, или вовсе с нихромовой катушкой.

Клоны чуть подороже практически идентичны оригинальным HAKKO 907. Определить оригинальность можно по наличию или отсутствию маркировки на оплетке провода бренда HAKKO и номера модели на нагревательном элементе.

Можно также определить подлинность изделия, измерив сопротивление между электродами или проводами нагревательного элемента паяльника.

Оригинал или качественный клон:

  • Сопротивление нагревательного элемента – 3-4 Ом
  • Термистор — 50-55 Ом при комнатной температуре
  • между жалом и ESD заземлением — меньше 2 Ом

Плохие клоны:

  • На нагревательном элементе – 0-2 Ом для нихромовой катушки, больше 10 Ом для дешевой керамики
  • на термопаре – 0-10 Ом
  • между жалом и ESD заземлением – меньше 2 Ом

Если сопротивление нагревательного элемента слишком велико, скорее всего он поврежден. Лучше обменяйте его на другой (если есть возможность) или купите новый керамический элемент A1321.

Питание
Чтобы вы не запутались в схеме, преобразователь на ней изображен как два преобразователя. В остальном схема довольна проста и у вас не должно возникнуть трудностей с ее чтением.

  1. На выходе каждой вторичной линии напряжения устанавливаем мостовой выпрямитель. Я купил несколько выпрямителей 1000 В 2 А хорошего качества. Преобразователь на 24В линии выдает максимум 2А, а паяльнику нужна мощность 50 Вт, получается общая расчетная мощность будет примерно 48 Вт.
  2. К линии вывода 24В подключен сглаживающий конденсатор 2200 мкф 35 В. Кажется, что можно было взять конденсатор емкостью поменьше, но у меня в планах подключение дополнительных приборов к самодельной станции.
  3. Для снижения напряжения питания контрольной панели с 9В до 5В я использовал регулятор напряжения LM7805T с несколькими конденсаторами.

Управление через ШИМ

  1. На второй схеме изображено управление керамическим нагревательным элементом: сигнал с микроконтроллера ATMega идет на МОП-транзистор IRF540N через оптрон РС817.
  2. Значения резисторов на схеме условные, и в окончательной сборке могут быть изменены.
  3. Пины 1 и 2 соответствуют проводам нагревательного элемента.
  4. Пины 4 и 5 (термистор) соединяются с разъемом, к которому подключим операционный усилитель LM358.
  5. К пину 3 подключено ESD заземление паяльника.

Подключения к плате контроллера

Основа паяльной станции – микроконтроллер ATMega8. На этом микроконтроллере достаточно разъемов, чтобы не использовать сдвиговые регистры для входов/выходов и сильно упрощает дизайн устройства.

Три пина ОС для ШИМ дают достаточно каналов для будущих дополнений (например, второй паяльник), а количество каналов АЦП дает возможность контролировать температуру нагрева. На схеме видно, что я добавил дополнительный канал для ШИМ и разъемы для датчика температуры на будущее.

В правом верхнем углу находятся разъемы под поворотный регулятор (А и В для направлений, плюс кнопка-выключатель).
Разъем для ЖК-дисплея разделен на две части: 8 пинов – под питание и данные (пин 8), 4 пина – под настройки контраста/фоновой подсветки (пин 4).

ISP коннектор не вводим в схему. Для подключения микроконтроллера и его перепрограммирования в любой момент я установил DIP-28 разъем.

R4 и R8 контролируют усиление соответствующих схем (максимально до ста крат).
Какие-то детали будут изменены в ходе сборки, но в целом схема останется такой.

Шаг 3: День 2 – подготовительная работа


Корпус, который я заказал, оказался слишком мал для моего проекта, или компоненты оказались слишком велики, поэтому я заменил его на более вместительный. Минусом стало то, что и размер паяльной станции увеличился соответственно. Зато появилась возможность добавить дополнительные приборы – диодную лампу для комфортной работы, второй паяльник, разъем под жало для пайки припоем или дымоудалитель, и т.д.

Обе платы были скомпонованы в один блок.

Подготовка

Если вам повезло, и вы раздобыли подходящее гнездо для паяльника HAKKO, пропустите два параграфа.
Сначала я заменил родной штекер на паяльнике на новый. Он цельнометаллический и с блокирующей гайкой, это значит, что он всегда будет на своем месте и практически вечный. Я просто отрезал старый 5-типиновый штекер и припаял новый вместо него.

Для разъема сверлим отверстие в стенке корпуса. Проверьте, входит ли разъем в отверстие, и оставьте его там. Остальные компоненты передней панели мы установим позже.

Припаяйте к разъему 5 проводков и смонтируйте 5-типиновый разъем, который пойдет на плату. Затем вырежьте отверстия под ЖК-дисплей, поворотный регулятор и 2 кнопки. Если вы хотите вывести кнопку включения на переднюю панель, под нее тоже нужно вырезать отверстие.

На последней фотографии видно, что для подключения дисплея я использовал шлейф от старого флоппи-дисковода. Это отличный вариант, также можно использовать шлейф IDE (от дисковода жёстких дисков).

Затем подключите 4-хпиновый разъем к поворотному регулятору и если вы установили кнопки, подключите и их.
По углам выреза под дисплей хорошо было бы просверлить 4 отверстия под монтажные маленькие винты, иначе дисплей не будет держаться на своем месте. На заднюю панель я вывел разъем под шнур питания и выключатель.

Шаг 4: День 2 – Делаем печатную плату





Вы можете использовать мой чертеж для печатной платы, или сделать свой, удовлетворяющий вашим требованиям и техническим характеристикам.

Шаг 5: День 3 – Завершение сборки и кодировка

На этом этапе обязательно нужно проверить напряжение в ключевых точках вашего агрегата (5VDC, 24VDC выводы и т.д.). Стабилизатор LM7805, МОП-транзистор IRF540 и все активные и пассивные компоненты не должны нагреваться на этом этапе.

Если ничего не нагрелось и не загорелось, можно собирать все компоненты на места. Если ваша передняя панель уже собрана, вам осталось только припаять провода преобразователя, плавкий предохранитель, разъема питания и выключателя.

Шаг 6: Дни 4-13 – Микропрограммное обеспечение

Пока я пользуюсь сырым и непроверенным микропрограммным обеспечением, поэтому я решил отложить его публикацию, пока не напишу самодиагностирующую отладочную подпрограмму. Я бы не хотел, чтобы ваш дом или мастерская пострадали от пожара, поэтому дождитесь окончательной публикации.


Долго думал, писать ли статью про эту самоделку или нет. В интернете можно насчитать наверно с десяток статей по этой схеме. Но так как на мой взгляд именно это схемотехническое решение наиболее удачное - делюсь конструкцией с вами, уважаемые посетители сайта "Технообзор". Сразу хочу по благодарить автора схемы за проделанную работу, и за то, что он выложил ее для общего пользования. Паяльная станция довольно проста в изготовлении и очень нужно в радиолюбительской практике.

Когда только начинал свой путь радиолюбителя, то о ни каком и не думал. Паял мощным 60 ватным паяльником. Делалось все навесным монтажом и толстыми проводами. С годами немного набравшись опыта дорожки все становились тоньше, а детали меньше. Покупались соответственно паяльники меньшей мощности. Приобрел как-то паяльник от паяльной станции LUKEY-702 с максимальной мощностью 50 ватт и встроенной термопарой. Схему для сборки подобрал сразу. Простая и надежная, а также минимум деталей.

Схема самодельной паяльной станции


Список деталей для схемы:

  • R1 - 1M
  • R2 - 1k
  • R3 - 10k
  • R4 - 82k
  • R5 - 47k
  • R7, R8 - 10k
  • R индикатора -0.5k
  • C3 - 1000mF/50v
  • C2 - 200mF/10v
  • C - 0,1mF
  • Q1 - IRFZ44
  • IC4 – 78L05ABUTR
Контроллер взял в DIP корпусе. Программировать их не сложно. Использовать можно любой соответствующий программатор, даже самый простой из 5 проводов и резисторов. Надеюсь здесь трудностей не возникнет. Прошивки для индикаторов с ОА и ОК находятся . Картинка с фьюзами также находиться там.



Силовой трансформатор был взят с проигрывателя пластинок. Его имя - ТС-40-3. Нечего не перематывал. Все соответствующие напряжения на нем уже есть. Для питания самого паяльника были соединены две обмотки параллельно.Он выдает около 19 вольт. Нам вполне достаточно. Для этого на данной модели трансформатора надо поставить перемычки между выводами трансформатора 6 и 8, а также 6’ и 8’ на другой катушке. Снимаем напряжение с выводов 6 и 6’.


Для питания микроконтроллера блока управления паяльной станции и ОУ нам надо напряжение от 7,5 до 15 вольт. Можно конечно и до 35, но это будет предел для микросхемы - стабилизатора 78L05. Она будет сильно нагреваться. Для этого я соединил обмотки последовательно. Получилось напряжение 12 вольт. На 8 выводе трансформатора припаяны два провода. Отпаиваем, что тоньше, и перекладываем его на свободную клемму. Перемычку надо поставить на 10 вывод трансформатора и отпаянный провод. Напряжение снимается с 10’ и 12 вывода. Вышеописанное только для трансформатора ТС-40-3.

Силовые диоды В1 применены КД202К. Как раз подходят для этой цели. Для питания МК взял мало-габаритную диодную сборку В2. В качестве светодиодных индикаторов был применен E30361-L-0-8-W с общим катодом. Развел также свою печатную плату под свой индикатор. Она получилась двусторонняя. Односторонняя не смог. Слишком много перемычек. Плата не самая лучшая, но проверена и рабочая. Также перепаял разъем на самом паяльнике. Его стандартный никуда не годиться. Сперва бузер не был пред усмотрен на плате. Установил его после, но плата в архиве исправлена.



Подобрал наилучший разъём папа - мама из имеющегося хлама. Хочу еще сказать насчет полевого транзистора IRFZ44. У меня он по каким то причинам не захотел работать. Сразу выгорал при включении. На данный момент уже около года стоит IRF540. Почти не греется. Радиатор там нужен не большой.

Паяльная станция - изготовление корпуса


Итак, корпус паяльной станции. Хорошо когда заходишь в магазин, и есть выбор готовых корпусов. У меня к сожалению такой роскоши нет. А искать всякие коробки от непонятно чего, а потом еще думать как все туда запихнуть не очень то и хочется. Корпус выгнул из жести. После разметил и просверлил все отверстия и покрасил краской из баллончика. Дырку для индикатора заклеил куском пластмассы от черной пивной бутылки. Кнопки сделаны из советских корпусов транзисторов КТ3102 в железном корпусе и им подобным. Нужно еще откалибровать показания температуры с помощью резистора R5 и термопары мультиметра. После сборки и проверки все провода закрепил пластмассовыми застежками. После прикрутил верхнюю крышку корпуса. Станция готова к работе. Удачной всем сборки. Паяльную станцию изготовил - Бухарь.