Фильтры предназначены для избирательного выделения полезного сигнала из смеси шумов, помех и самого сигнала. Фильтры характеризуются полосой пропускания, резонансной частотой, эффективностью выделения/ослабле- ния полезного/мешающего сигнала.

Фильтры являются одними из самых распространенных и значимых узлов радиоэлектронной аппаратуры. Они позволяют:

♦ выделить необходимую пользователю информацию из зашумленного сигнала;

♦ улучшить соотношение сигнал/шум;

♦ повысить качество сигнала.

По назначению известны фильтры:

♦ высоких (верхних) частот;

♦ низких (нижних) частот;

♦ полосовые;

♦ узкополосные;

♦ широкополосные;

♦ режекторные (заграждающие) и пр.

ОУ .

На рис. 38.1 приведена типовая низких частот и ему соответствующая АЧХ.

Рассмотрим основные типы фильтров, выполненных с применением

Как известно, коэффициент передачи ОУ, включенного по схеме, рис. 38.2, определяется как 1+R3/R4. Для реализации типового фильтра нижних частот необходимо выполнение условий:

Рис. 38.2. Пример практической реализации низких частот

С1=С2=С, R1=R2,Тогда

частоту среза фильтра можно определить из приближенного соотношения: ДГц]=10/С[мкФ], рис. 38.3. Аналогичный вывод можно получить для расчета фильтра высоких частот.

Соединив последовательно фильтр нижних и верхних частот, можно получить , которого представлена на рис. 38.9.

Рис. 38.7. Пример практической реализации высоких частот

Примечание.

Отклонение номиналов прецизионных элементов фильтров от рекомендованных (расчетных) значений не должно превышать 7 %. Отметим, что для построения фильтра можно использовать ‘прецизионные элементы ( , резисторы) равного номинала, включенные для получения значений R/2 и 2С параллельно.

♦ выходного усилителя (DA 1.2);

Частоты среза, от…до

Напряжение питания

Таблица 38.1 (продолжение)

Частоты среза, от…до

Напряжение питания

Полосовые линейные фильтры 2-го(*4-го;**8-го) порядка

с программ ированием: корпус DIP, WideSO; 2(**4) элемента в корпусе Таблица 38.2

Частоты среза, от…до

Напряжение питания

Фильтры НЧ 5-го порядка на переключаемых конденсаторах:

корпус DIP, SO; 1 элемент в корпусе Таблица 38.3

Частоты среза, от…до

Напряжение питания

Частоты среза, от…до

Напряжение

Примечание.

Порог срабатывания компаратора DA1 устанавливают потенциометром R4. Максимальная чувствительность включения компаратора составляет 10 мВ. Светодиод HL1 индицирует наличие надпорогового сигнала. Потенциометром R7 устанавливают верхний предел реакции микросхемы управления LED-шкалой DA2 на величину управляющего напряжения - от 1 до 6 В; потенциометром R10 - нижний предел - от О до 5 В; VD4 защищает управляющие входы микросхемы DA2 от перенапряжений, одновременно стабилизируя управляющие напряжения.

VD5, VD6 автоматически обеспечивает минимальную разность между верхним и нижним уровнями управляющих напряжений на выводах 3 и 16 микросхемы DA2 в 1 В. Диод VD3 защищает цепь управления LED-шкалой от перенапряжения. Резисторы R11-R22 предназначены для согласования уровня сигналов, снимаемых с выходов микросхемы DA2, с уровнями КМОП-логики.

Если на вход устройства поступает надпороговый аналоговый (или цифровой) сигнал, то с увеличением его частоты произойдет плавное поочередное или одновременно-групповое переключение каналов индикации ( HL2-HL13). Одновременно управляющие сигналы с выходов микросхемы DA2 через КМОП-инверторы DD1, DD2 поступят на управляющие входы аналоговых КМОП-ключей (микросхемы DA3- DA5).

Полоса пропускания каждого из каналов при установке на управляющих входах 3 и 16 микросхемы DA2 максимального и минимального уровней 6 и О Б, соответственно, составят для первых шести каналов 400 Гц у для остальных - 760 Гц. Таким образом, первый канал пропустит сигналы частотой ниже 400 Гц, второй - в полосе 400-800 Гц,… последний, 12-й канал пропускает частоты свыше 6 кГц.

Примечание.

Регулировкой потенциометров R7 и R10 можно плавно изменять ширину и границы частотных каналов.

HL2-HL13 динамически индицируют номер задействованного канала управления.

Устройство потребляет 60л*А при напряжении питания 15 Б и одном све гящемся светодиоде.

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. - СПб.: Наука и Техника, 2013. -352 с.

Психоакустика (наука, изучающая звук и его влияние на человека) установила, что человеческое ухо способно воспринимать звуковые колебания в диапазоне от 16 до 20000 Гц. При том, что диапазон 16-20 Гц (низкие частоты), воспринимается уже не самим ухом, а органами осязания.

Многие меломаны сталкиваются с тем, что большинство поставляемых акустических систем не удовлетворяет их потребности в полной мере. Всегда находятся мелкие недоработки, неприятные нюансы и т.п., которые побуждают собирать колонки с усилителями своими руками.

Возможны и другие причины сборки сабвуфера (профессиональный интерес, хобби и т.п).

Сабвуфер (от англ. «subwoofer») – низкочастотный динамик, который может воспроизводить звуковые колебания в диапазоне 5-200 Гц (в зависимости от типа конструкции и модели). Может быть пассивным (использует выходной сигнал с отдельного усилителя) или активным (оснащается встроенным усилителем сигнала).

Низкие частоты (басы) в свою очередь можно разделить на три основные подвида:

  • Верхние (англ. UpperBass) – от 80 до 150-200 Гц.
  • Средние (англ. MidBass / мидбасы) – от 40 до 80 Гц.
  • Глубокие или подбасы (англ. SubBass) – все что ниже 40 Гц.

Фильтры частот применяются как для работы активных сабвуферов, так и пассивных.

Преимущества активных низкочастотных динамиков заключается в следующем:

  • Активный усилитель сабвуфера не нагружает дополнительно акустическую систему (так как питается отдельно).
  • Входной сигнал может фильтроваться (исключаются посторонние шумы от воспроизведения высоких частот, работа устройства концентрируется только на том диапазоне, в котором динамик обеспечивает наилучшее качество передачи колебаний).
  • Усилитель при правильном подходе к конструкции может гибко настраиваться.
  • Исходный спектр частот можно разделить на несколько каналов, с которыми можно уже работать по-отдельности – низкие частоты (на сабвуфер), средние, высокие, а иногда и сверхвысокие частоты.

Виды фильтров для низких частот (НЧ)

По реализации

  • Аналоговые схемы.
  • Цифровые устройства.
  • Программные фильтры.

По типу

  • Активный фильтр для сабвуфера (так называемый кроссовер, обязательный атрибут любого активного фильтра – дополнительный источник питания)
  • Пассивный фильтр (такой фильтр для пассивного сабвуфера лишь отсеивает необходимые низкие часты в заданном диапазоне, не усиливая сигнала).

По крутизне спада

  • Первого порядка (6 дБ/октав.)
  • Второго порядка (12 дБ/октав.)
  • Третьего порядка (18 дБ/октав.)
  • Четвертого порядка (24 дБ/октав.)

Основные характеристики фильтров:

  • Полоса пропускания (диапазон пропускаемых частот).
  • Полоса задерживания (диапазон существенного подавления сигнала).
  • Частота среза (переход между полосами пропускания и задерживания происходит. нелинейно. Частота, на которой пропускаемый сигнал ослабляется на 3 дБ, называется частотой среза).

Дополнительные параметры оценки фильтров акустических сигналов:

  • Крутизна спада АХЧ (Амплитудно-Частотная Характеристика сигнала).
  • Неравномерность в полосе пропускания.
  • Резонансная частота.
  • Добротность.

Линейные фильтры электронных сигналов различаются между собой по типу кривых (зависимости показателей) АЧХ.

Разновидности таких фильтров чаще всего называются по фамилиям ученых, выявившим эти закономерности:

  • Фильтр Баттерворта (гладкая АЧХ в полосе пропускания),
  • Фильтр Бесселя (характерна гладкая групповая задержка),
  • Фильтр Чебышёва (крутой спад АЧХ),
  • Эллиптический фильтр (пульсации АЧХ в полосах пропускания и подавления),

И другие.

Простейший НЧ фильтр для сабвуфера второго порядка выглядит следующим образом: последовательно подключенная к динамику индуктивность (катушка) и параллельно – емкость (конденсатор). Это так называемый LC-фильтр (L — обозначение индуктивности на электрических схемах, а C – емкости).

Принцип работы заключается в следующем:

  1. Сопротивление индуктивности прямо пропорционально частоте и поэтому катушка пропускает низкие частоты и задерживает высокие (чем выше частота, тем выше сопротивление индуктивности).
  2. Сопротивление емкости обратно пропорционально частоте сигнала и поэтому высокочастотные колебания затухают на входе динамика.

Такой тип фильтров – пассивный. Более сложные в реализации – активные фильтры.

Как сделать простой фильтр для сабвуфера своими руками

Как и было сказано выше, самые простые в конструкции – пассивные фильтры. Они имеют в составе всего несколько элементов (количество зависит от требуемого порядка фильтра).

Собрать свой собственный фильтр НЧ можно по готовым схемам в сети или по индивидуальным параметрам после подробных расчетов требуемых характеристик (для удобства можно найти специальные калькуляторы для фильтров разных порядков, с помощью которых можно быстро рассчитать параметры составляющих элементов – катушек, емкостей и т.п.).

Для активных фильтров (кроссоверов) можно использовать специализированное программное обеспечение, например, такое как «Crossover Elements Calculator».

В некоторых случаях при проектировании схемы может понадобиться фильтр-сумматор.

Здесь оба канала звука (стерео), например, после выхода с усилителя и т.п., необходимо сначала отфильтровать (оставить только НЧ), а потом объединить в один с помощью сумматора (так как сабвуфер чаще устанавливается всего один). Или наоборот, сначала суммировать, а затем отфильтровать НЧ.

В качестве примера возьмем простейший пассивный НЧ фильтр второго порядка.

Если сопротивление динамика будет 4 Ом, предполагаемая частота среза – 150 Гц, то для типа фильтрации по Баттерворту нужны будут.

» — имеется в виду активный фильтр нижних частот. Он особенно полезен при расширении стереофонической звуковой системы на дополнительный динамик воспроизводящий только самые низкие частоты. Данный проект состоит из активного фильтра второго порядка с регулируемой граничной частотой 50 — 250 Гц, входного усилителя с регулировкой усиления (0.5 — 1.5) и выходных каскадов.

Конструкция обеспечивает прямое подключение к усилителю с мостовой схемой, так как сигналы сдвинуты относительно друг друга по фазе на 180 градусов. Благодаря встроенному источнику питания, стабилизатору на плате, можно обеспечить питание фильтра симметричным напряжением от усилители мощности — как правило это двухполярка 20 — 70 В. Фильтр НЧ идеально подходит для совместной работы с промышленными и самодельными усилителями и предусилителями.

Принципиальная схема ФНЧ

Схема фильтра для сабвуфера показана на рисунке. Работает он на основе двух операционных усилителей U1-U2 (NE5532). Первый из них отвечает за суммирование и фильтрацию сигнала, в то время как второй обеспечивает его кэширование.

Принципиальная схема ФНЧ к сабу

Стереофонический входной сигнал подается на разъем GP1, а дальше через конденсаторы C1 (470nF) и C2 (470nF), резистора R3 (100k) и R4 (100k) попадает на инвертирующий вход усилителя U1A. На этом элементе реализован сумматор сигнала с регулируемым коэффициентом усиления, собранный по классической схеме. Резистор R6 (27k) вместе с P1 (50k) позволяют провести регулировку усиления в диапазоне от 0.5 до 1.5, что позволит подобрать усиления сабвуфера в целом.

Резистор R9 (100k) улучшает стабильность работы усилителя U1A и обеспечивает его хорошую поляризацию в случае отсутствия входного сигнала.

Сигнал с выхода усилителя попадает на активный фильтр нижних частот второго порядка, построенный U1B. Это типичная архитектура Sallen-Key, которая позволяет получить фильтры с разной крутизной и амплитудной. На форму этой характеристики напрямую влияют конденсаторы C8 (22nF), C9 (22nF) и резисторы R10 (22k), R13 (22k) и потенциометр P2 (100k). Логарифмическая шкала потенциометра позволяет добиться линейного изменения граничной частоты во время вращения ручки. Широкий диапазон частот (до 260 Гц) достигается при крайнем левом положении потенциометра P2, поворачивая вправо вызываем сужения полосы частот до 50 Гц. На рисунке далее показана измеренная амплитудная характеристика всей схемы для двух крайних и среднего положения потенциометра P2. В каждом из случаев потенциометр P1 был установлен в среднем положении, обеспечивающим усиление 1 (0 дб).

Сигнал с выхода фильтра обрабатывается с помощью усилителя U2. Элементы C16 (10pF) и R17 (56k) обеспечивают стабильную работу м/с U2A. Резисторы R15-R16 (56k) определяют усиление U2B, а C15 (10pF) повышает его стабильность. На обоих выходах схемы используются фильтры, состоящие из элементов R18-R19 (100 Ом), C17-C18 (10uF/50V) и R20-R21 (100k), через которые сигналы поступают на выходной разъем GP3. Благодаря такой конструкции, на выходе мы получаем два сигнала сдвинутых по фазе на 180 градусов, что позволяет осуществлять прямое подключение двух усилителей и усилителя с мостовой схемой.

В фильтре используется простой блок питания с двухполярным напряжением, основанный на стабилитронах D1 (BZX55-C16V), D2 (BZX55-C16V) и двух транзисторах T1 (BD140) и T2 (BD139). Резисторы R2 (4,7k) и R8 (4,7k) представляют собой ограничители тока стабилитронов, и были подобраны таким образом, чтобы при минимальном напряжении питания ток составлял около 1 мА, а при максимальном был безопасен для D1 и D2.

Элементы R5 (510 Ом), C4 (47uF/25V), R7 (510 Ом), C6 (47uF/25V) представляют собой простые фильтры сглаживания напряжения на базах T1 и T2. Резисторы R1 (10 Ом), R11 (10 Ом) и конденсаторы C3 (100uF/25V), C7 (100uF/25V) представляют собой также фильтр напряжения питания. Разъем питания — GP2.

Подключение сабвуферного фильтра

Стоит отметить, что модуль фильтра для сабвуфера должен быть присоединен к выходу предварительного усилителя после регулятора громкости, что позволит улучшить регулировку громкости всей системы. Потенциометром усиления можно отрегулировать соотношение громкости сабвуфера к громкости всего сигнального тракта. К выходу модуля необходимо подключить любой усилитель мощности, работающий в классической конфигурации, . При необходимости используйте только один из выходных сигналов, сдвинутых по фазе на 180 градусов относительно друг друга. Оба выходные сигнала можно использовать, если нужно построить усилитель в мостовой конфигурации.

Предлагаемые схемы предназначены как раз для таких случаев. Большинство из них были разработаны по просьбе трудящихся. Поэтому, кстати, мало рисунков печатных плат - это дело сугубо индивидуальное, зависит от деталей и компоновки в целом. Но платы зависит многое, в том числе и количество граблей, на которые наступит радиолюбитель при повторении, поэтому все дополнения только приветствуются. Я пока проектирую платы только для конструкций личного употребления, на все нет времени...

При разработке ставилось два условия:
- обойтись только однополярным питанием 12 вольт, чтобы не связываться с изготовлением преобразователей и не лезть за повышенным напряжением внутрь усилителя
- схема должна быть предельно простой и не требовать для повторения особой квалификации

Первая схема предназначена для простейших установок. Поэтому ее характеристики далеки от идеала, но возможности вполне достаточны. Большой диапазон перестройки частоты частоты среза позволяет использовать сабвуфер практически с любой акустикой. Если у магнитолы нет линейных выходов - не беда. Схема может работать и с колоночных выходов магнитолы. Для этого нужно только увеличить сопротивление резисторов R1,R2 до 33...100 кОм.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ3102

1 BC546 В блокнот
С1 1 мкФ 10В 1 В блокнот
C2 Конденсатор 100 нФ 1 В блокнот
C3 Конденсатор 68 нФ 1 В блокнот
C4 Конденсатор 33 нФ 1 В блокнот
C5 Электролитический конденсатор 100 мкФ 16В 1 В блокнот
C6 Электролитический конденсатор 100 мкФ 10В 1 В блокнот
VR1 Переменный резистор 100 кОм 1 Двойной В блокнот
R1-R5 Резистор

10 кОм

5 В блокнот
R6 Резистор

200 кОм

1 В блокнот
R7 Резистор

240 кОм

1

Электрическим фильтром называется устройство для передачи электрических сигналов, пропускающее токи в определенной области частот и препятствующее их прохождению вне этой области. В радиотехнике и электронике электрические фильтры подразделяют на пассивные и активные. Схемы пассивных фильтров содержат только пассивные элементы: резисторы, конденсаторы и катушки индуктивности.

В схемы активных фильтров помимо указанных элементов входят такие активные изделия, как транзисторы или интегральные микросхемы. Фильтрующие свойства устройства определяются его амплитудно-частотной характеристикой, которой называется зависимость коэффициента усиления этого устройства от частоты сигнала. В некоторой области частот, которая называется полосой пропускания или полосой прозрачности, электрические колебания передаются фильтром с входа на выход практически без ослабления. Вне полосы прозрачности расположена полоса затухания или задерживания, в пределах которой частотные составляющие сигнала ослабляются. Между полосой прозрачности и полосой задерживания находится частота, называемая граничной. В связи с тем что существует плавный переход между полосой прозрачности и полосой затухания, граничной обычно считается частота, на которой ослабление сигнала оказывается равным -3 дБ - то есть по напряжению в √2 раз меньше, чем в полосе прозрачности.

Всегда интересно получить крутой переход амплитудно-частотной характеристики между полосой прозрачности и полосой затухания. В пассивных фильтрах увеличения крутизны такого перехода добиваются усложнением схемы и применением многозвенных систем. Сложные фильтры требуют громоздких расчетов и точной настройки. Активные фильтры благодаря использованию обратной связи оказываются значительно проще и дешевле.

Принято подразделять фильтры на четыре категории в зависимости от расположения полосы прозрачности:
. фильтры нижних частот (0 ≤ f ≤ f 0);
. фильтры верхних частот (f ≥ f 0);
. полосовые фильтры (f 01 ≤ f ≤ f 02);
. заграждающие или режекторные фильтры (0 ≤ f ≤ f 01 и f ≥ f 02).

Здесь f - частота сигналов, проходящих через фильтр; f 0 -граничная частота; f 01 - нижняя граничная частота; f 02 - верхняя граничная частота. Таким образом, фильтр нижних частот nponycкает составляющие сигнала, частота которых меньше граничной частоты; фильтр верхних частот пропускает составляющие сигнала, частота которых больше граничной частоты; полосовой фильтр пропускает составляющие сигнала, частота которых находится между нижней граничной частотой f 01 и верхней граничной частотой f 02 ; наконец режекторный фильтр ослабляет сигналы, частота которых находится между нижней граничной f 01 и верхней граничной f 02 частотами. Существуют и более сложные фильтры специального назначения, например гребенчатый фильтр, применяемый в цветном телевидении, пропускающий много узких полос и ослабляющий промежутки между ними.

Электрические фильтры находят широкое применение в электротехнике, радиотехнике и электронике. Так на выходе выпрямителей используется фильтр нижних частот, пропускающий только постоянную составляющую выпрямленного тока и ослабляющий прохождение пульсаций. В радиоприемниках широко используются полосовые фильтры, которые позволяют выделить из принятых антенной сигналов множества радиостанций только один, полоса частот которого оказывается в полосе прозрачности фильтра.

Принято еще одно деление всех фильтров на две категории: фильтры, схема которых содержит катушки индуктивности, и фильтры без индуктивностей, RC-фильтры или резисторно-конденсаторные фильтры.

Активные резисторно-конденсаторные фильтры имеют огромное преимущество перед их пассивными аналогами, особенно на частотах ниже 10 кГц. Пассивные фильтры для низких частот должны содержать катушки большой индуктивности и конденсаторы большой емкости. Поэтому они получаются громоздкими, дорогостоящими, а их характеристики оказываются далеко не идеальными.

Большая индуктивность достигается за счет большого числа витков катушки и применения ферромагнитного сердечника. Это лишает ее свойств чистой индуктивности, так как длинный провод многовитковой катушки обладает заметным сопротивлением, а ферромагнитный сердечник подвержен влиянию температуры на его магнитные свойства. Необходимость же использования большой емкости вынуждает применять конденсаторы, обладающие плохой стабильностью, например электролитические. Активные фильтры в значительной мере лишены указанных недостатков.

Схемы дифференциатора и интегратора, построенные с применением операционных усилителей, представляют собой простейшие активные фильтры. При выборе элементов схемы в определенной зависимости от частоты дифференциатор становится фильтром верхних частот, а интегратор - фильтром нижних частот. Далее будут рассмотрены примеры других более сложных и наиболее универсальных фильтров. Большое количество других возможных схем активных фильтров вместе с их детальным математическим анализом можно найти в разных учебниках и пособиях.

Фильтры нижних частот
Если объединить схему инвертирующего усилителя со схемой интегратора, образуется схема фильтра нижних частот первого порядка, которая показана на рис. 1 .

Рис. 1.

Такой фильтр представляет собой инвертирующий усилитель, обладающий постоянным коэффициентом усиления в полосе прозрачности от постоянного тока до граничной частоты f 0 . Видно, что в пределах полосы прозрачности, пока емкостное сопротивление конденсатора достаточно велико, коэффициент усиления схемы совпадает с коэффициентом усиления инвертирующего усилителя:

Граничная частота этого фильтра определяется элементами цепи обратной связи в соответствии с выражением:

Амплитудно-частотная характеристика - зависимость амплитуды сигнала на выходе устройства от частоты при постоянной амплитуде на входе этого устройства - представлена на рис.2 .

Рис. 2

В полосе затухания выше граничной частоты f 0 усиление уменьшается с интенсивностью 20 дБ/декада (или 6 дБ/октава), что означает уменьшение коэффициента усиления по напряжению в 10 раз при увеличении частоты также в 10 раз или уменьшение коэффициента усиления в два раза при каждом удвоении частоты.

Если такой крутизны наклона амплитудно-частотной характеристики в полосе затухания недостаточно, можно использовать фильтр нижних частот второго порядка, схема которого показана на рис.З .

Рис. З

Коэффициент усиления фильтра нижних частот второго порядка такой же, как у фильтра первого порядка, в связи с тем что суммарное сопротивление резисторов в цепи инверсного входа, как и ранее, выражается значением R1:


Граничная частота при выполнении условия R 1 C 1 = 4R 2 C 2 также выражается прежней формулой:


Что касается амплитудно-частотной характеристики этого фильтра, представленной на рис. 4 , то она отличается повышенной крутизной наклона, которая составляет 12 дБ/октава.

Рис. 4

Таким образом, в полосе затухания при увеличении частоты вдвое напряжение сигнала на выходе фильтра уменьшается в четыре раза.

Фильтры верхних частот
Аналогично построена схема фильтра верхних частот, которая представлена на рис.5 . Такой фильтр является инвертирующим усилителем с постоянным коэффициентом усиления в полосе прозрачности от частоты f0 и более. В полосе прозрачности коэффициент усиления схемы такой же, как у инвертирующего усилителя:

Рис.5 . Принципиальная схема активного фильтра верхних частот первого порядка

Граничная частота f 0 на уровне -3 дБ задается входной цепью в соответствии с выражением:


Крутизна наклона амплитудно-частотной характеристики, которая представлена на рис.6 , в области граничной частоты составляет 6 дБ/октава.

Рис.6 . Амплитудно-частотная характеристика фильтра верхних частот первого порядка

Как и в случае фильтров нижних частот, можно собрать активный фильтр верхних частот второго порядка в целях повышенного подавления сигнала в полосе затухания. Принципиальная схема такого фильтра показана на рис.7 .

Рис.7 . Принципиальная схема активного фильтра верхних частот второго порядка

Крутизна наклона амплитудно-частотной характеристики фильтра верхних частот второго порядка в области граничной частоты составляет 12 дБ/октава, а сама характеристика показана на рис.8 .

Рис.8 . Амплитудно-частотная характеристика фильтра верхних частот второго порядка

Полосовые фильтры
Если объединить активный фильтр нижних частот с активным фильтром верхних частот, то в результате образуется полосовой фильтр, принципиальная схема которого приведена на рис.9 .

Рис. 9 . Принципиальная схема активного полосового фильтра

Эту схему иногда называют избирательным усилителем с ин-тегродифференцирующей обратной связью. Подобно усилителям, содержащим колебательные контуры, полосовой фильтр также имеет амплитудно-частотную характеристику с выраженным максимумом на определенной частоте. Называть такую частоту резонансной нельзя, так как резонанс возможен только в контурах, образованных индуктивностью и емкостью. В других случаях частоту такого максимума обычно называют частотой квазирезонанса. Для рассматриваемого полосового фильтра частота квазирезонанса f0 определяется элементами цепи обратной связи:

Амплитудно-частотная характеристика этого полосового фильтра показана на рис. 10 .

Рис.10 . Амплитудно-частотная характеристика полосового фильтра

Максимальный коэффициент усиления на частоте квазирезонанса оказывается равным:


Относительная полоса пропускания на уровне -3 дБ:

Принципиальная схема еще одного полосового фильтра приведена на рис. 11 .

Рис. 11 . Принципиальная схема полосового фильтра с двойным Т-фильтром

Здесь в цепь отрицательной обратной связи включен двойной Т-фильтр, образованный резисторами R2, R3, R5 и конденсаторами Cl, С2, СЗ.

Как известно, если выполняются следующие условия:

амплитудно-частотная характеристика двойного Т-фильтра содержит квазирезонанс, частота которого равна


причем на частоте квазирезонанса коэффициент передачи двойного Т-фильтра равен нулю. Поэтому активный фильтр с двойным Т-фильтром, включенным в цепь отрицательной обратной связи, является полосовым фильтром с максимумом амплитудно-частотной характеристики на частоте квазирезонанса. Три такие характеристики представлены на рис. 12 . Характеристики различаются разными сопротивлениями резистора R4: нижняя соответствует R4 = 100 кОм, средняя - R4 = 1 МОм, верхняя - R4 = ∞ .

Рис. 12 . Амплитудно-частотная характеристика активного фильтра с двойным Т-фильтром в цепи отрицательной обратной связи

Режекторные фильтры
Тот же самый двойной Т-фильтр может быть включен не в цепь отрицательной обратной связи, как это сделано при создании полосового фильтра, а в цепь входного сигнала. При этом образуется активный режекторный фильтр, схема которого приведена на рис, 13 .

Рис.13 . Принципиальная схема режекторного фильтра с двойным Т-фильтром

При выполнении прежних условий

амплитудно-частотная характеристика активного фильтра, имеющего во входной цепи двойной Т-фильтр, содержит квазирезонанс, частота которого по-прежнему определяется фор мулой (8). Но на частоте квазирезонанса коэффициент усиления этого активного фильтра равен нулю. Амплитудно-частотная характеристика активного фильтра с двойным Т-фильтром во входной цепи показана на рис.14 .

Рис. 14 . Амплитудно-частотная характеристика активного фильтра с двойным Т-фильтром во входной цепи

Сложные фильтры
Несколько активных фильтров можно соединять последовательно для получения амплитудно-частотной характеристики с повышенной крутизной наклона. Кроме того, соединенные последовательно секции простых фильтров имеют пониженную чувствительность. Это означает, что небольшое отклонение величины одного из компонентов схемы (отклонение сопротивления резистора или емкости конденсатора от нормы) будет приводить к меньшему влиянию на окончательную характеристику фильтра, чем в случае аналогичного сложного фильтра, построенного на одном операционном усилителе.

Рис. 15 . Принципиальная схема ступенчатого фильтра

На рис. 15 показан ступенчатый фильтр, собранный из трех операционных усилителей. Популярность таких фильтров резко возросла после появления в продаже интегральных микросхем, содержащих несколько операционных усилителей в одном корпусе. Достоинствами этого фильтра являются низкая чувствительность к отклонениям величин компонентов и возможность получения трех выходов: верхних частот U вых1 , полосового U вых2 и нижних частот U выхЗ.

Фильтр составлен из суммирующего усилителя DA1 и двух интеграторов DA2, DA3, которые соединены в виде замкнутой петли. Если элементы схемы выбраны согласно условию

то граничная частота оказывается равной


Выходы верхних и нижних частот имеют крутизну наклона амплитудно-частотной характеристики, равную 12 дБ/октава, а полосовой выход имеет треугольную характеристику с максимумом на частоте f 0 с добротностью Q, которая определяется резисторами установки усиления микросхемы DA1.